ǰλãҳ > 时间序列Stata操作 ?-7 - 百度文库
{S12Dp}MA(112)ģ Stata䣩 . arima S12Dp, ma(1,12) => ȥؾ . arima S12Dp, noconstant ma(1,12) => . predict ehat3,residual .wntestq ehat3 Portmanteau test for white noise --------------------------------------- Portmanteau (Q) statistic = 62.1168 Prob > chi2(40) = 0.0141 QͳPֵ<ܾԭ裬ΪвзǴ{S12Dp}лϢδȡϣģʧ {S12Dp}AR(112)AR(11213)ģ . arima S12Dp, noconstant ar(1,12) . predict ehat4,residual (13 missing values generated) . wntestq ehat4 Portmanteau test for white noise --------------------------------------- Portmanteau (Q) statistic = 68.0750 Prob > chi2(40) = 0.0037 ʧ . arima S12Dp, ar(1,12,13) wntestqʱҲʧˢ{S12Dp}ARIMA((1,12)(1,12))ģ . arima S12Dp, noconstant ar(1,12) ma(1,12) wntestqʱҲʧ {S12Dp}еĶԺͼЧӦüӷģ֡Чȡ֮иӵĹϵٶΪ˻ϵó˻ģеķչ ڳ˷ģ
ȿ{S12Dp}Ķԡ۲12ڣ12ףϵƫϵ߾βԳARMA(11)ģȡֺеĶϢ ٿ{S12Dp}ļԣЧӦԣ۲Ϊλϵƫϵǰ121ββԲΪڵARMA(0,1)12????(??)????ģȡ{S12Dp}ļϢ 12ԭУģͣARIMA(??,1,??)(0,1,??)???? . arima S12Dp, arima(1,0,1) sarima(0,0,1,12) ؾ1Ͳ12š ЧӦԵ{S12Dp}ȻԹ˻ģ͡صARIMAģͣ ڶ{Dp}MA1ģͣؾϺã۲ģ͵IJвͼͲвƽͼ Stata䣩 .tsline ehat1 =>
ARIMA(011)(noconstant)IJвͼ1
Ӳвͼ仯Ƚϴβ롣 .twoway (connected ehat1 n in 1/252) =>
ARIMA(011)(noconstant)IJвͼ2
.generate e12=ehat1*ehat1 (1 missing value generated) .twoway (connected e12 n)
ARIMA(011)(noconstant)IJвƽͼ
Ps.tsline e12 ҲԵõвƽͼ
ֵͬIJвеķDzвƽвƽͼϵ췽̫ˡ
3еIJƽԣ
ֵĿƽС֣ȡϢȻȡ˷ƽȵȷϢȴ˷˸Ϣ
2СУҶԭн112֣ʱͼͼɼ1ײֺ{Dp}ƽˣٿǼأ{Dp}12֣õ{S12Dp}ʱͼΪ
ʱͼʾȻ{S12Dp}мȺЧӦ۲ʱв ͼڵ2С
ͼʾӳһ{S12Dp}ϵӰڣ֮ͺڵ
ϵҲӰΧڡ{S12Dp}أȽƽȡ
ֵStataгԶ{Dp}һβ֣ Stata䣩 .generate D2p=D.Dp .tsline D2p .ac D2p
2ײֺ{D2p}1{Dp}ʱͼͼ
{Dp}ʱͼ {Dp}ͼ {D2p}ʱͼ {D2p}ͼ ʱͼ֣2ײֺеIJȷˣˣϵ仯øΪƵ Ȼ{D2p}Ҳƽȵģ{Dp}ȣġ
4ģͣԤδһ¶ˮƽ
ӵ2С⣩
췽ֱۼϣΪARCHģͣһLM:
1ʹregressDpMA1ع
regress Dp L.Dp
2) LMͳм estat archlm, lags( 1 2 3 4) =>
ARCHģеԻعΪ(p=)2,3,4ʱLMͳPֵСˮƽ0.05ܾԭ裬Ϊвƽз룬ҿARCHģϸеعϵ
(Ps.
ma(1)ָǶ{Dp}ma(1)ģ
arch(1)ָǶ{Dp}IJвͺΪ1ڵ췽ģ )
ԻعΪ1p=1 =>
ԻعΪ2p=2
Model 2ò
arch Dp,arch(1/2) arima(0,0,1) nolog =>
ԻعΪ3p=3 ͬã
L2ǰϵԼͨ,ģֹͣȷARCHģ͵ԻعΪ12 p=1ʱ,h(t)=+Stata䣩
. arch Dp,noconstant arch(1/1) arima(0,0,1) nolog . predict ehat,residual (1 missing value generated) . wntestq ehat
Portmanteau test for white noise ---------------------------------------
Portmanteau (Q) statistic = 45.1366 Prob > chi2(40) = 0.2659 . wntestb ehat
?1t?12
Pֵڦвͨ顣 . estat ic
Akaike's information criterion and Bayesian information criterion -----------------------------------------------------------------------------
Model | Obs ll(null) ll(model) df AIC BIC -------------+---------------------------------------------------------------
. | 251 . -1599.71 3 3205.42 3215.997 ----------------------------------------------------------------------------- ֮ǰARIMA(011)(noconstant)ģ͵AIC/BIC£ ARCH(1)AIC/BICСģš p=2ʱ,h(t)=+Stata䣩
. arch Dp,noconstant arch(1/2) arima(0,0,1) nolog . predict eehat,residual . wntestq eehat
Portmanteau test for white noise ---------------------------------------
Portmanteau (Q) statistic = 45.1990 Prob > chi2(40) = 0.2638 . wntestb eehat
Pֵڦвͨ顣 . estat ic
-----------------------------------------------------------------------------
Model | Obs ll(null) ll(model) df AIC BIC -------------+---------------------------------------------------------------
. | 251 . -1594.913 4 3197.826 3211.928 -----------------------------------------------------------------------------
ARCH(2)AICֵBICֵСARCH(1)ģǸСϢѡARCH(2)ģ͡ؿ дģͣ
ARIMA(0,1,1) (noconstant):(1?B)xt=(1?0.33B)t
t=htet
ARCH(2):h(t)=13710.6+0.27t?12+0.13t?22 Ԥ⣨δһ¶ˮƽ ֶӳʱ264ڣ252+12 Stata䣩 . set obs 253
obs was 252, now 253 . replace n = 253 in 253 (1 real change made)
?1t?12+?2t?22
92ƪĵ