当前位置:首页 > 2008年湖南省益阳市中考数学试卷及答案
Ⅱa. 小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BD和CE的长,从而
确定D点和E点,再画正方形DEFG就容易了.
设△ABC的边长为2 ,请你帮小聪求出正方形的边长(结果用含根号的式子表示,不要求分母有理化) .
A G F B
D
图10(2)
E
C Ⅱb. 小明想:不求正方形的边长也能画出正方形. 具体作法是: ①在AB边上任取一点G’,如图作正方形G’D’E’F’;
②连结BF’并延长交AC于F; ③作FE∥F’E’交BC于E,FG∥F′G′交AB于G,GD∥G’D’交BC于D,则四边形DEFG即为所求.
你认为小明的作法正确吗?说明理由. A
G F
F′ G′ B C E′ D E D′
图10(3)
六、(本题10分)
23. 两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1. 固定△ABC不动,将△DEF进行如下操作:
(1) 如图11(1),△DEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.
C F
A B E D 图11(1)
(2)如图11(2),当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.
C F
A D B E 图11(2)
(3)如图11(3),△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连结AE,请你求出sinα的值. (F) C
A D (F) B (E)
七、(本题12分)
24.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.
如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围; (2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
y
C
A B x
M O
D
图12
2008年湖南省益阳市中考数学试卷
参考答案及评分意见
一、选择题(本题共10个小题,每小题3分,共30分)
题号 1 2 3 4 5 6
答案 D A D B C A
二、填空题(本题共6个小题,每个小题4分,满分24分)
题号
11
4
7 D 8 D 9 B 10 C 12 6
13 14 15 3 516
答案不惟一如:x?2 2xx?2x,x2?4答案 9.1×10
x2?2x108° (2,4)
xx2?4x?2x2?4x?4x?2x2?2xxx2?4x?4x?216题还有如下答案:2;2;2;2;2.,,,,,x?2x?2x?2x?2xx?4x?4x?4x?4x?4x?4x?2x(每空2 分)
三、解答题(本题共3个小题,每个小题6分,满分18分)
17.解:原式=2+1-9+1 ·············································································· 4分
=-5 ······················································································· 6分
18.解:(1)∵DE∥BC,
∴∠EDB=∠DBC=?ABC?40? ··················································· 3分
(2)∵AB=BC, BD是∠ABC的平分线,∴D为AC的中点 ∵DE∥BC,∴E为AB的中点,
∴DE=
19.解:(1)
1AB?6cm ········································································ 6分 2121··············································· 3分 (20?9?30?12?50?16?100?3)?41 ·
40(2) 41×1200=49200(元)
答:这40 名同学捐款的平均数为41元,这个中学的捐款总数大约是49200元 ······ 6分
四、解答题(本题共2个小题,每小题8分,共16分)
20.解:设原计划每天挖土石方x万立方米,增调人员和设备后每天挖y万立方米 ······· 1分
可列出方程组:??y?2x?1 ·························································· 5分
2x?(5?2)y?13.4? 解之得:??x?1.3
?y?3.6 答:原计划每天挖土石方1.3万立方米,增调人员和设备后每天挖3.6万立方米 ···· 8分 21.解:(1) 根据题意可知:y=4+1.5(x-2) , ∴ y=1.5x+1(x≥2) ····················································· 4分 (2)依题意得:7.5≤1.5x+1<8.5 ··························································· 6分 ∴
13≤x<5 ································································· 8分 3
五、(本题10分)
22.Ⅰ.证明:∵DEFG为正方形,
∴GD=FE,∠GDB=∠FEC=90° ···················································· 2分
∵△ABC是等边三角形,∴∠B=∠C=60° ······································· 3分 ∴△BDG≌△CEF(AAS) ······························································ 5分 Ⅱa.解法一:设正方形的边长为x,作△ABC的高AH,
A 求得AH?3 ······································· 7分
x3?x G F 由△AGF∽△ABC得:? ············ 9分
23B
D
E
解图10(2)
H
C 解之得:x?232?3(或x?43?6) ······· 10分
解法二:设正方形的边长为x,则BD? 在Rt△BDG中,tan∠B=
∴
2?x ········································· 7分 2GD, BDx?3 ································································ 9分 2?x2232?3解之得:x?(或x?43?6) ··································· 10分
解法三:设正方形的边长为x,
则BD?2?x,GB?2?x ····················································· 7分 22?x2) ·································· 9分 2 由勾股定理得:(2?x)2?x2?( 解之得:x?43?6 ························································· 10分 Ⅱb.解: 正确 ······························································································· 6分 由已知可知,四边形GDEF为矩形 ······················································· 7分
∵FE∥F’E’ ,
A G G’ F’ F
共分享92篇相关文档