当前位置:首页 > 人教版七年级上册数学 备课导学案:1.3有理数的加减法(1)
1.3有理数的加减法(一)
学习目标:1、探索有理数加法法则,理解有理数的加法法则;
2、能运用有理数加法法则,正确进行有理数加法运算; 3、经历探索有理数加法法则的过程,体验数学来源于实践并为实践服务的思想,同时培养学生探究性学习的能力.
学习难点:师生共同合作探索有理数加法法则的过程及和的符号的确定. 课堂活动: 一、
有理数加法的探索
1.汽车在公路上行驶,规定向东为正,向西为负,据下列情况,分别列算式,并回答:汽车两次运动后方向怎样?离出发点多远?
(1)向东行驶5千米后,又向东行驶2千米, (2)向西行驶5千米后,又向西行驶2千米, (3)向东行驶5千米后,又向西行驶2千米, (4)向西行驶5千米后,又向东行驶2千米, (5)向东行驶5千米后,又向西行驶5千米, (6)向西行驶5千米后,静止不动,
2. 足球队甲、乙两队比赛,主场甲队4:1胜乙队,赢了3球,客场甲队1:3
负乙队,
输了2球,甲队两场比赛累计净胜球1个,你能把这个结果用算式表示出来吗? 议一议:比赛中胜负难料,两场比赛的结果还可能哪些情况呢?动动手填表:
赢球数 主场 3 ‐3 3 ‐3
净胜球 客场 ‐2 2 2 ‐2 1
算式
3 0 0 ‐3 你还能举出一些应用有理数加法的实际例子吗?请同学们积极思考. 二、有理数加法的归纳
探索:两个有理数相加,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?
说一说:两个有理数相加有多少种不同的情形? 议一议:在各种情形下,如何进行有理数的加法运算? 归纳:有理数加法法则:
①同号两数相加,取相同的符号,并把绝对值相加.
②异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. ③一个数与0相加,仍得这个数. 三、实践应用 问题1.计算
(1)(+8)+(+5) 5)
(4)(-8)+(+5) (5)(-8)+(+8) (6)(+8)+0; 问题2.某公司三年的盈利情况如下表所示,规定盈利为“+”(单位:万元)
第一年 -24 第二年 +15.6 第三年 +42 (2)(-8)+(-5) (3)(+8)+(-
(1) 该公司前两年盈利了多少万元?(2)该公司三年共盈利多少万元?
2
问题3.判断(1)两个有理数相加,和一定比加数大. ( )
(2)绝对值相等的两个数的和为0.( )
(3)若两个有理数的和为负数,则这两个数中至少有一个是负数.( ) 四、课堂反馈:
1.一个正数与一个负数的和是( )
A、正数 B、负数 C、零 D、以上三种情况都有可能
2.两个有理数的和( ) A、一定大于其中的一个加数 B、一定小于其中的一个加数 C、大小由两个加数符号决定 D、大小由两个加数的符号及绝对值而决定
3.计算 (1)(+10)+(-4) (2)(-15)+(-32) (3)(-9)+ 0
(4)43+(-34) (5)(-10.5)+(+1.3) (6)(-1+ 31)2知识巩固 一、选择题
1.若两数的和为负数,则这两个数一定( )
A.两数同负 B.两数一正一负 C.两数中一个为0 D.以上
情况都有可能
2.两个有理数相加,若它们的和小于每一个加数,则这两个数( ) A.都是正数 B.都是负数 C.互为相反数 D.符号不同 3.如果两个有理数的和是正数,那么这两个数( )
A.都是正数 B.都是负数 C.都是非负数 D.至少有一个正数
4.使等式6?x?6?x成立的有理数x是 ( )
A.任意一个整数 B.任意一个非负数 C.任意一个非正数 D.任意一个有理数
5.对于任意的两个有理数,下列结论中成立的是 ( )
3
A.若a?b?0,则a??b B.若a?b?0,则a?0,b?0 C.若a?b?0,则a?b?0 D.若a?b?0,则a?0 6.下列说法正确的是 ( )
A.两数之和大于每一个加数 B.两数之和一定大于两数绝对值的和
C.两数之和一定小于两数绝对值的和 D.两数之和一定不大于两数绝对值的和 二、判断
1.若某数比-5大3,则这个数的绝对值为3.( ) 2.若a>0,b<0,则a+b>0.( )
3.若a+b<0,则a,b两数可能有一个正数.( ) 4.若x+y=0,则︱x︱=︱y︱.( ) 5.有理数中所有的奇数之和大于0.( ) 三、填空
1.(+5)+(+7)=_______; (-3)+(-8)=________; (+3)+(-8)=________; (-3)+(-15)=________; 0+(-5)=________; (-7)+(+7)=________.
2.一个数为-5,另一个数比它的相反数大4,这两数的和为________. 3.(-5)+______=-8; ______+(+4)=-9. _______+(+2)=+11;
______+(+2)=-11;
5. 如果a??2,b??5,则a?b? ,a?b? 四、计算
111(1)(+21)+(-31) (2)(-3.125)+(+3) (3)(-)+(+)
832
197 (4)(-3)+0.3 (5)(-22 )+0 (6)│-7│+│-9│
31415
4
五、土星表面夜间的平均气温为-150℃,白天的平均气温比夜间高27℃,那么白天的平均气温是多少?
六、一位同学在一条由东向西的跑道上,先向东走了20米,又向西走了30米,能否确定他现在位于原来的哪个方向,与原来位置相距多少米?
七、潜水员原来在水下15米处,后来上浮了8米,又下潜了20米,这时他在什么位置?要求用加法解答。
八、 已知a?2,b?5.
(1)求a?b (2)若又有a?b,求a?b.
5
共分享92篇相关文档