云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 5数值积分与数值微分课件

5数值积分与数值微分课件

  • 62 次阅读
  • 3 次下载
  • 2025/5/3 2:35:56

为使问题讨论更具一般性,这里考虑带权的定积分求积公式

???x?f?x?dx??Af?x? (5.11)

akkk?1bn

式中??x?是已知的非负函数,为区间[a,b]上的权函数,[a,b]可以取为?。 显然在式(5.11)中,若??x??1,就是前面讨论的求积公式。

119

定理5.2 求积公式(5.11)的代数精度最大为

2n?1。

证明 设x1,x2,?,xn是求积公式(5.11)的任意一组求积节点,用此节点构造插值型求积公式(5.11),并令

?n?x???x?x1??x?x2???x?xn?

取2n次多项式f?x???n2?x?代入公式(5.11), 考虑它的求积余项,有

R?f?????x??ab2n?x?dx??Ak??xk???a??x??n2?x?dx?0

2nk?1nb因为?n2?x?是2n次多项式,由代数精度定义得

???x?f?x?dx??Af?x?的代数精度不大于2n?1。

bakkk?1n

120

为证求积公式?a??x?f?x?dx??Akf?xk?的代数精

k?1bn度可以为2n?1,设f?x?是任意一个2n?1次多项式,用?n?x?去除f?x?,由多项式除法有

f?x??q?x??n?x??r?x?,f?xk??r?xk?,k?1,2,?,n

式中q?x?,r?x?都是次数不大于n?1的多项式,于是有

???x?f?x?dx????x?q?x???x?dx????x?r?x?dx(5.12)

aanabbb因为上面的求积公式(5.11)是具有n个节点的插值型求积公式,故其代数精度不小于n?1,从而有

???x?r?x?dx??Ar?x???Af?x?

akkkkk?1k?1bnn

121

要让式(5.11)成为等式,由式(5.12)应有

???x?q?x???x?dx?0 (5.13)

anb式(5.13)要求对固定的n次多项式?n?x?和任意次数不超过n?1的多项式q?x?都成立,这样可以用q?x?的这种任意性,选择求积节点x1,x2,?,xn。 由正交多项式理论可知:使式(5.13)成立的点 x1,x2,?,xn是存在唯一的,且都在?a,b?内,它就是在?a,b?关于权??x?的n次正交多项式的零点。

于是选取这些点作为求积公式的求积节点,并构造对应的插值型求积公式,就得到具有2n?1次迭代精度的求积公式了。

122

搜索更多关于: 5数值积分与数值微分课件 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

为使问题讨论更具一般性,这里考虑带权的定积分求积公式 ???x?f?x?dx??Af?x? (5.11) akkk?1bn 式中??x?是已知的非负函数,为区间[a,b]上的权函数,[a,b]可以取为?。 显然在式(5.11)中,若??x??1,就是前面讨论的求积公式。 119 定理5.2 求积公式(5.11)的代数精度最大为2n?1。 证明 设x1,x2,?,xn是求积公式(5.11)的任意一组求积节点,用此节点构造插值型求积公式(5.11),并令 ?n?x???x?x1??x?x2???x?xn? 取2n次多项式f?x???n2?x?代入公式(5.11), 考虑它的求积余

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com