当前位置:首页 > 轨道交通集团基础知识
闭式系统 (普通冷器、 大表冷器) 车站空调冷风可以进入隧道,起到降温作用,工程综合造价较屏蔽门式系统低。 车站空调冷风可以进入隧道,起到降温作用,工程综合造价较屏蔽门式系统低。 车站空调负荷增大,国内长江以北城活塞作用引起车站市。 空气环境波动较大。 可以有效隔断隧道噪音、气流对屏蔽门式 系统 在闭式系统的基础上,用屏蔽车站区域的影响,减小车站空调屏蔽门系统及其控制增加了工程造价,隧道主要靠通风降温。 国内长江流域及以南城市。 门将车站与隧道区域分隔开。 负荷、机房面积、用电容量,阻挡人员跌落轨道。
75. 车站通风空调系统的控制一般由几级组成?各级控制对象及功能有哪些?
答:车站通风空调系统的监控由中央控制、车站控制和就地控制三级组成,就地控制具有优先权。环控系统的监控由设备监控系统(EMCS)和防灾报警系统(FAS)实施。 (1)中央控制
中央控制装置设在控制指挥中心(OCC),该中心配置中央级工作站(OCC工作站)和全线隧道通风系统中央显示屏。OCC工作站可对二号全线隧道通风系统进行监控,执行隧道通风系统预定的运行模式或向车站下达各种隧道通风系统运行模式指令;同时OCC工作站还对全线车站通风空调系统进行监视,向车站下达各种大小系统和水系统运行模式指令。 (2)车站控制
车站控制装置设在各车站控制室,该控制室配置车站级工作站和紧急后备控制盘(IBP)。在正常情况下,车站级工作站可监视车站所管辖范围内的隧道通风系统、车站大小系统和水系统的运行状态,向OCC传送信息,同时可执行中央控制室下达的各项运行模式指令;在控制指挥中心授权下,车站级工作站为车站消防指挥中心,能根据实际情况将车站大小系统转入紧急运行模式和执行控制指挥中心下达的区间隧道紧急运行模式;当车站工作站出现故障时,在IBP上可以执行控制指挥中心下达区间隧道通风系统和车站大系统紧急运行模式指令。
(3)就地控制
在车站大系统的通风空调机房附近设有环控电控室,其内设有配电箱和就地控制开关等;对分散设置的设备,有条件时,可以将控制柜设在其附近,以便于设备调试和维修。就地控制具有优先权,并反馈信号到车控室。
21
76. 地铁通风与空调系统有哪些功能?
答:当列车在正常运行时,应保证地铁内部空气环境在规定标准范围内;当列车阻塞在区间隧道内时,应保证阻塞处的有效通风功能;当车站内或列车在区间隧道发生火灾事故时,应具备防灾、排烟和通风功能。
77. 地铁通风与空调系统的控制方式,它分为哪几种方式?
答:地下车站、地铁区间隧道的通风与空调系统宜设就地控制、车站控制、中央控制三级控制,地下车站设备及管理用房宜设设就地控制、车站控制两级控制;地铁通风与空调系统分为通风系统与空调系统两种方式。
78. 通常所说的大系统、小系统、水系统是指什么?由什么设备组成?
答:大系统指车站公共区通风空调系统;小系统指车站设备管理用房通风空调系统;水系统指制冷空调水系统。
大系统正常运行时应能为乘客提供“过渡性舒适”的候车环境。当车站公共区发生火灾时,大系统应能迅速排除烟气,同时为乘客提供一定的迎面风速,诱导乘客向安全区疏散。 大系统一般在车站左右两端各设一处环控机房,分为2个空调系统。每个系统负担一半站厅负荷和一半站台负荷。系统采用全空气低速系统,由组合式空调器、空调新风机、回/排风机、排烟风机及相应的管道、风道、新风井(亭)、排风井(亭)和各种阀门组成。
小系统根据房间的使用功能以及设备对环境的不同要求,划分为空调通风系统和一般通风系统。正常运行时小系统应能为车站工作人员提供舒适的工作环境条件和为车站设备运行提供所需的工艺环境条件。当车站设备管理用房区域发生火灾时,小系统应能及时排除烟气或进行防烟防火分隔。
水系统为大小系统共用冷源。冷水机组一般按2台同样大的机组(各自承担一半车站负荷)、1大1小(按车站总冷量的2/3和1/3各配置一台冷水机组)、2大一小(小容量机组满足部分设备用房列车停运时段的功冷需求)配置。冷水机组与冷冻水泵、冷却水泵、冷却塔一一对应。水系统设计为闭式机械循环。
79. 地铁通风与空调系统的应具有哪些功能?
答:当列车在正常运行时,应保证地铁内部空气环境在规定标准范围内;当列车阻塞在区间隧道内时,应保证阻塞处的有效通风功能;当车站内或列车在区间隧道发生火灾事故时,应具备防灾、排烟和通风功能。
22
80. 通风与空调系统的控制方式?
答:地下车站、地铁区间隧道的通风与空调系统宜设就地控制、车站控制、中央控制三级控制,地下车站设备及管理用房宜设就地控制、车站控制两级控制。
81. 隧道通风系统、车站公共区通风空调系统、车站设备管理用房通风空调系统
在不同工况下各有什么运行模式?
答: (1)隧道通风系统
1)正常运行:A、早间运营前区间隧道通风系统进行半小时的纵向机械通风,通风完毕后转入正常运行模式。B、列车正常运行时,车站隧道通风系统投入运行而区间隧道通风系统停止运行,利用列车活塞效应通过车站两端的活塞风井进行通风换气来排除区间隧道的余热余湿。C、夜间收车后区间隧道通风系统进行半小时的纵向机械通风,通风完毕后打开所有风道内风阀。
2)阻塞运行:当列车因故阻塞在区间隧道时,区间隧道通风系统开启对阻塞的隧道进行半纵向机械送、排风,以满足阻塞区间的空气环境条件。
3)火灾事故运行:当着火列车停在车站隧道疏散乘客时,车站隧道通风系统运行排烟;当着火列车停在区间隧道内疏散乘客时,区间隧道通风系统按预定的隧道内火灾模式运行排烟,并诱导乘客疏散。
(2)车站公共区通风空调系统
1)正常运行:在列车正常运营时段,大系统采用焓值控制,根据季节变化设有空调工况小新风、空调工况全新风和非空调工况全通风三种基本运行模式;夜间列车停止运营后,停止大系统及其水系统的运行。
2)车站乘客过度拥挤:当发生突发性客流、区间堵塞、线路故障及其它原因引起车站乘客过度拥挤时,大系统的组合式空调器、制冷机、冷冻水泵、冷却水泵、冷却塔等空调设备均应按三种基本运行模式下的满负荷运行。
3)火灾事故运行:车站公共区发生火灾时,立即停止车站大系统的空调水系统,转换到车站大系统火灾运行模式。当站台层发生火灾时,利用站台回/排风系统和隧道通风系统同时运作排烟,车站内人员迎着新风方向从站台经站厅疏散到地面;当站厅层发生火灾时,利用站厅回/排风系统进行排烟,站厅内人员迎着新风方向向地面疏散。无论是站厅排烟还是站台排烟,均利用车站出入口、通道自然补风。
(3)车站设备管理用房通风空调系统
23
1)正常运行:当采用全空气空调系统时,空调系统运行采用焓值控制,采用空调工况小新风、空调工况全新风和非空调工况全通风三种模式运行;当采用风机盘管加新风空调系统时,空调工况采用风机盘管加新风运行,非空调工况只对这些房间送新风和排风。只设通风系统的设备管理用房全年按通风模式运行。
2)火灾事故运行:当设备管理用房发生火灾时,相应系统立即转入到预定的火灾运行模式,即立即排除烟气或隔断火源、烟气,同时设有排烟系统的内走道实施排烟,对车站控制室、内走道、封闭的楼梯间实施加压送风。
82. 目前国内通风空调的新技术在轨道交通领域的运用有哪些?
答:目前,许多通风空调的新技术在轨道交通领域纷纷涉足、尝试,如集中供冷、大温差冷冻水输送、江水冷却等技术在广州已处于实施阶段;车站大系统的送回风变频控制,在广州等地已属于成熟技术;冰蓄冷空调技术在深圳、成都等地已被深入探讨;地源空调技术也处在理论交流阶段。
1、集中供冷技术。可分为集中制冷和集中冷却两种方式。主要介绍集中制冷。如能在适当位置建集中冷站,可以节省制冷机房面积,节约土建投资;并可以减少对城区环境的影响。缺点是冷冻水管道长距离输送的热损失和水力功耗可造成能耗增加;当然集中制冷可选择大型离心式冷水机组,提高制冷能效比,结合大温差冷冻水技术,综合能耗可以适当降低。另外一个缺点就是由于冷冻水的长距离输送时间较长,温度信号反馈迟滞,带来水系统的自动控制困难。
2、蓄冷技术。随着电力供应的紧张,目前许多城市均出台了分步电价政策,为空调蓄冷技术的应用提供了政策条件。蓄冷未必节能,但经济意义和削峰填谷,减少电力增容的意义,在国内空调领域应用呈增长态势。地铁车站的空调高峰负荷出现在客流晚高峰时(17:30~18:30),多为电价平段;而停运时间(23:00~5:00)处于电价谷段,理论上具有蓄冷优势。但对于屏蔽门式系统的地铁车站,每个车站的空调总冷负荷不大(700~1100kW),分站供冷时蓄冷的意义不大;集中供冷时可考虑采用冰蓄冷,用谷段的蓄冷完全填掉峰段的空调负荷。在指挥中心(OCC)和地面办公楼中,利用消防水池水蓄冷将是个不错的选择。
3、自动控制模式。对于多台车站的空调系统,首先是冷水机组运行的自动加载、卸载控制,尤其是多台机组时;其次是冷冻水的变流量控制;再是送回风的变流量控制。要想做到上述控制,需要设置相应的传感器,准确感知实际负荷值和水、风、环境参数等。空调末端设备需要安装温控电动调节阀,自动调节末端所需的冷冻水量;总供回水管上需安装温度传感器和流量传感器,冷水机组可根据实耗负荷值确定投入运行的台数,水泵与冷水机组联
24
共分享92篇相关文档