当前位置:首页 > 数学建模习题
数学建模
习 题
景德镇陶瓷学院信息工程学院
1
习题一
1.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余不变。试构造模型并求解。 2.模仿1.4节商过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。试设计一个安全过河方案,并使渡河次数尽量地少。
3.利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型:(1)分段的指数增长模型。将时间分为若干段,分别确定增长率r。
(2)阻滞增长模型。换一种方法确定固有增长率r和最大容量xm。 4.说明1.5节中Logistic模型(9)可以表为x(t)?xm,其中t0是?r(t?t0)1?e人口增长出现拐点的时刻,并说明t0与r, xm的关系.
5.假定人口的增长服从这样的规律:时刻t的人口为x(t),t到t+?t时间内人口的增长与xm-x(t)成正比例(其中xm为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。
6.某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿。次日早8:00沿同一条路径下山,下午5:00回旅店。某乙说,甲必在二天中的同一时刻经过路径中的同一地点。为什么? 7.37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜
2
者及轮空者进入下一轮,直至比赛结束。问共需进行多少场比赛,共需进行多少轮比赛。如果是n支球队比赛呢?
8.甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。甲乙之间有一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。问开往甲乙两站的电车经过丙站的时刻表是如何安排的。
9.某人家住T市在他乡工作,每天下班后乘火车于6:00抵达T市车站,他的妻子驾车准时到车站接他回家,一旦他提前下班搭早一班火车于5:30抵T市车站,随即步行回家,他的妻子像往常一样驾车前来,在半路上遇到他,即接他回家,此时发现比往常提前了10分钟。问他步行了多长时间?
10.一男孩和一女孩分别在离家2公里和1公里且方向相反的两所学校上学,每天同时放学后分别以4公里和2公里每小时的速度步行回家。一小狗以6公里/小时速度由男孩处奔向女孩,又从女孩处奔向男孩,如此往返直至回到家中。问小狗奔波了多少路程?
3
习题二
1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍,学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:
(1)按比例分配取整数的名额后,乘下的名额按惯例分给小数部分较大者.
(2)2.1节中的Q值方法.
(3)d‘Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,?相除,其商数如下表: A B C 1 235 333 432 2 117.5 166.5 216 3 78.3 111 144 4 58.75 83.25 108 5 ?.. ?. 86.4 --- ?. 将所得商数从大到小取前10(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?
如果委员会从10人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.
(4)你能提出其它的方法吗.用你的方法分配上面的名额. 2.用微积分的方法导出2.2节的公式(2)
3.在2.5节中考虑8人艇分重量级组(桨手体重不超过86kg和轻量级
4
共分享92篇相关文档