云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2013年中考数学100份试卷分类汇编:作图题

2013年中考数学100份试卷分类汇编:作图题

  • 62 次阅读
  • 3 次下载
  • 2025/5/24 1:10:24

点评: 此题主要考查了复杂作图,正确根据垂直平分线的性质得出P点位置是解题关键. 22、(2013?咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )

a=b 2a+b=1 A.B. 2a+b=﹣1 C. 2a﹣b=1 D. 考点: 作图—基本作图;坐标与图形性质;角平分线的性质. 分析: 根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b的数量关系. 解答: 解:根据作图方法可得点P在第二象限角平分线上, 则P点横纵坐标的和为0, 故2a+b+1=0, 整理得:2a+b=﹣1, 故选:B. 点评: 此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|. 23、(2013?白银)两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号反射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)

考点: 作图—应用与设计作图. 分析: 仔细分析题意,寻求问题的解决方案. 到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为所求作的点C. 由于两条公路所夹角的角平分线有两条,因此点C有2个. 解答: 解:(1)作出线段AB的垂直平分线; (2)作出角的平分线(2条); 它们的交点即为所求作的点C(2个). 点评: 本题借助实际场景,考查了几何基本作图的能力,考查了线段垂直平分线和角平分线的性质及应用.题中符合条件的点C有2个,注意避免漏解. 24、(2013哈尔滨) 如图。在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A、B、M、N均在小正方形的顶点上.

(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C; (2)请直接写出四边形ABCD的周长.

考点:轴对称图形;勾股定理;网格作图;

分析:(1)根据轴对称图形的性质,利用轴对称的作图方法来作图,(2)利用勾股定理求

出AB 、BC、CD、AD四条线段的长度,然后求和即可最

解答:(1)正确画图(2)

25?52

25、(2013?黔东南州)如图,在直角三角形ABC中,∠ABC=90°.

(1)先作∠ACB的平分线;设它交AB边于点O,再以点O为圆心,OB为半径作⊙O(尺规作图,保留作图痕迹,不写作法); (2)证明:AC是所作⊙O的切线; (3)若BC=

,sinA=

1,求△AOC的面积. 2

考点: 作图—复杂作图;切线的判定. 分析: (1)根据角平分线的作法求出角平分线FC,进而得出⊙O; (2)根据切线的判定定理求出EO=BO,即可得出答案; (3)根据锐角三角函数的关系求出AC,EO的长,即可得出答案. 解答: (1)解:如图所示: (2)证明:过点O作OE⊥AC于点E, ∵FC平分∠ACB, ∴OB=OE, ∴AC是所作⊙O的切线; (3)解:∵sinA=∴∠A=30°, 1,∠ABC=90°, 2∴∠ACB=∠OCB=ACB=30°, ∵BC=, ∴AC=2,BO=tan30°BC=×=1, ×1=. ∴△AOC的面积为:×AC×OE=×2 点评: 此题主要考查了复杂作图以及切线的判定和锐角三角函数的关系等知识,正确把握切线的判定定理是解题关键. 26、(2013年广东省5分、19)如题19图,已知□ABCD.

(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法);

(2)在(1)的条件下,不连结AE,交CD于点F,求证:△AFD≌△EFC.

解析:

19. (1)如图所示,线段CE为所求;

(2)证明:在□ABCD中,AD∥BC,AD=BC.∴∠CEF=∠DAF ∵CE=BC,∴AD=CE,

又∵∠CFE=∠DFA,∴△AFD≌△EFC.

EDFC AB

27、(2013年广州市)已知四边形ABCD是平行四边形(如图9),把△ABD沿对角线BD翻折180°得到△AˊBD.

(1) 利用尺规作出△AˊBD.(要求保留作图痕迹,不写作法); (2)设D Aˊ 与BC交于点E,求证:△BAˊE≌△DCE. 分析:(1)首先作∠A′BD=∠ABD,然后以B为圆心,AB长为半径画弧,交BA′于点A′,连接BA′,DA′,即可作出△A′BD.

(2)由四边形ABCD是平行四边形与折叠的性质,易证得:∠BA′D=∠C,A′B=CD,然后由AAS即可判定:△BA′E≌△DCE. 解:(1)如图:①作∠A′BD=∠ABD,

②以B为圆心,AB长为半径画弧,交BA′于点A′, ③连接BA′,DA′, 则△A′BD即为所求;

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

点评: 此题主要考查了复杂作图,正确根据垂直平分线的性质得出P点位置是解题关键. 22、(2013?咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( ) a=b 2a+b=1 A.B. 2a+b=﹣1 C. 2a﹣b=1 D. 考点: 作图—基本作图;坐标与图形性质;角平分线的性质. 分析: 根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b的数量关系. 解答: 解:根据作图方法可得点P在第二象限角平分线上, 则P点横纵坐标的和为0, 故2a+b+1=0

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com