当前位置:首页 > 2019年高考数学真题及答案(含全国1卷,全国2卷,全国3卷共3套)
18.解:(1)连结B1C,ME.
因为M,E分别为BB1,BC的中点,
所以ME∥B1C,且ME=
1B1C. 21A1D. 2又因为N为A1D的中点,所以ND=
由题设知A1B1?DC,可得B1C?A1D,故ME?ND, 因此四边形MNDE为平行四边形,MN∥ED. 又MN?平面EDC1,所以MN∥平面C1DE. (2)由已知可得DE⊥DA.
以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则
A(2,0,0),A1(2,0,4),M(1,3,2),N(1,0,2),A1A?(0,0,?4),A1M?(?1,3,?2),
A1N?(?1,0,?2),MN?(0,?3,0).
??m?A1M?0设m?(x,y,z)为平面A1MA的法向量,则?,
??m?A1A?0 9
???x?3y?2z?0,所以?可取m?(3,1,0).
?4z?0.????n?MN?0, 设n?(p,q,r)为平面A1MN的法向量,则???n?A1N?0.??3q?0,?可取n?(2,0,?1).
???p?2r?0.所以?于是cos?m,n??m?n2315, ??|m‖n|2?5510. 5所以二面角A?MA1?N的正弦值为19.解:设直线l:y?3x?t,A?x1,y1?,B?x2,y2?. 2(1)由题设得F?35?3?,0?,故|AF|?|BF|?x1?x2?,由题设可得x1?x2?.
22?4?3?y?x?t12(t?1)?22由?,可得9x?12(t?1)x?4t?0,则x1?x2??. 292??y?3x从而?12(t?1)57?,得t??. 92837x?. 28所以l的方程为y?(2)由AP?3PB可得y1??3y2.
3??y?x?t2由?,可得y?2y?2t?0. 22??y?3x
10
所以y1?y2?2.从而?3y2?y2?2,故y2??1,y1?3.
代入C的方程得x1?3,x2?1. 3故|AB|?413. 320.解:(1)设g(x)?f'(x),则g(x)?cosx?11,g'(x)??sinx?. 2(1?x)1?x当x???1,?????????1,时,单调递减,而,可得在g'(0)?0,g'()?0g'(x)g'(x)???有唯一零点,
22?2??设为?.
则当x?(?1,?)时,g'(x)?0;当x???,?????时,g'(x)?0. 2???????所以g(x)在(?1,?)单调递增,在??,?单调递减,故g(x)在??1,?存在唯一极大值点,
2??2?????即f'(x)在??1,?存在唯一极大值点.
2??(2)f(x)的定义域为(?1,??).
(i)当x?(?1,0]时,由(1)知,f'(x)在(?1,0)单调递增,而f'(0)?0,所以当x?(?1,0)时,f'(x)?0,故f(x)在(?1,0)单调递减,又f(0)=0,从而x?0是f(x)在(?1,0]的唯一零点.
??????(ii)当x??0,?时,由(1)知,f'(x)在(0,?)单调递增,在??,?单调递减,而f'(0)=0,
22?????????????f'???0,所以存在????,?,使得f'(?)?0,且当x?(0,?)时,f'(x)?0;当x???,??2??2??2?
11
???时,f'(x)?0.故f(x)在(0,?)单调递增,在??,?单调递减.
?2?????????????
又f(0)=0,f???1?ln?1???0,所以当x??0,?时,f(x)?0.从而,f(x)在?0,?
?2??2??2??2?
没有零点.
??????(iii)当x??,??时,f'(x)?0,所以f(x)在?,??单调递减.而
?2??2????所以f(x)在?,??有唯一零点.
?2????f???0,f(?)?0,?2?(iv)当x?(?,??)时,ln(x?1)?1,所以f(x)<0,从而f(x)在(?,??)没有零点. 综上,f(x)有且仅有2个零点.
21.解:X的所有可能取值为?1,0,1.
P(X??1)?(1??)?, P(X?0)????(1??)(1??),P(X?1)??(1??),所以X的分布列为
(2)(i)由(1)得a?0.4,b?0.5,c?0.1.
因此pi=0.4pi?1+0.5 pi+0.1pi?1,故0.1?pi?1?pi??0.4?pi?pi?1?,即
pi?1?pi?4?pi?pi?1?.
12
共分享92篇相关文档