云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2011年全国统一高考数学试卷(理科)(新课标版)

2011年全国统一高考数学试卷(理科)(新课标版)

  • 62 次阅读
  • 3 次下载
  • 2025/5/7 18:30:22

3、用定积分求平面图形的面积的步骤

a)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式; b)解方程组求出每两条曲线的交点,以确定积分的上、下限; c)具体计算定积分,求出图形的面积.

5.利用导数研究曲线上某点切线方程 【考点描述】

利用导数来求曲线某点的切线方程是高考中的一个常考点,它既可以考查学生求导能力,也考察了学生对导数意义的理解,还考察的直线方程的求法,以为包含了几个比较重要的基本点,所以在高考出题时备受青睐.我们在解答这类题的时候关键找好两点,第一找到切线的斜率;第二告诉的这点其实也就是直线上的一个点,在知道斜率的情况下可以用点斜式把直线方程求出来. 【实例解析】

例:已知函数y=xlnx,求这个函数的图象在点x=1处的切线方程. 解:k=y'|x=1=ln1+1=1

又当x=1时,y=0,所以切点为(1,0) ∴切线方程为y﹣0=1×(x﹣1), 即y=x﹣1.

我们通过这个例题发现,第一步确定切点;第二步求斜率,即求曲线上该点的导数;第三步利用点斜式求出直线方程.这种题的原则基本上就这样,希望大家灵活应用,认真总结.

6.导数在最大值、最小值问题中的应用 【知识点的知识】

一、利用导数求函数的极值 1、极大值

一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数的一个极大值,记作y极大值=f(x0),是极大值点. 2、极小值

一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),是极小值点. 3、极大值与极小值统称为极值

在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.请注意以下几点:

(ⅰ)极值是一个局部概念 由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小.

(ⅱ)函数的极值不是唯一的 即一个函数在某区间上或定义域内极大值或极小值可以不止一个.

(ⅲ)极大值与极小值之间无确定的大小关系 即一个函数的极大值未必大于极小值,如下图所示,x1是极大值点,x4是极小值点,而f(x4)>f(x1).

第29页(共53页)

(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 4、判别f(x0)式极大值、极小值的方法:

若x0满足f′(x0)=0,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.

5、求可导函数f(x)的极值的步骤: (1)确定函数的定义区间,求导数f′(x); (2)求方程f′(x)=0的根;

(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值.

二、利用导数求函数的最大值与最小值 1、函数的最大值和最小值

观察图中一个定义在闭区间[a,b]上的函数f(x)的图象.图中f(x1)与f(x3)是极小值,f(x2)是极大值.函数f(x)在[a,b]上的最大值是f(b),最小值是f(x1). 一般地,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. 说明:(1)在开区间(a,b)内连续的函数f(x)不一定有最大值与最小值.如函数f(x)=在(0,+∞)内连续,但没有最大值与最小值;

(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.

(3)函数f(x)在闭区间[a,b]上连续,是f(x)在闭区间[a,b]上有最大值与最小值的充分条件而非必要条件.

(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个

2、用导数求函数的最值步骤:

第30页(共53页)

由上面函数f(x)的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.

设函数f(x)在[a,b]上连续,在(a,b)内可导,则求f(x)在[a,b]上的最大值与最小值的步骤如下:

(1)求f(x)在(a,b)内的极值; (2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值.

【解题方法点拨】

在理解极值概念时要注意以下几点:

(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导). (2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.

(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.

(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,

(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.

7.简单线性规划 【概念】

线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.我们高中阶段接触的主要是由三个二元一次不等式组限制的可行域,然后在这个可行域上面求某函数的最值或者是斜率的最值. 【例题解析】

例:若目标函数z=x+y中变量x,y满足约束条件

(1)试确定可行域的面积;

(2)求出该线性规划问题中所有的最优解. 解:(1)作出可行域如图:对应得区域为直角三角形ABC, 其中B(4,3),A(2,3),C(4,2), 则可行域的面积S=

=

第31页(共53页)

(2)由z=x+y,得y=﹣x+z,则平移直线y=﹣x+z,

则由图象可知当直线经过点A(2,3)时,直线y=﹣x+z得截距最小, 此时z最小为z=2+3=5,

当直线经过点B(4,3)时,直线y=﹣x+z得截距最大, 此时z最大为z=4+3=7,

故该线性规划问题中所有的最优解为(4,3),(2,3) 这是高中阶段接触最多的关于线性规划的题型,解这种题一律先画图,把每条直线在同一个坐标系中表示出来,然后确定所表示的可行域,也即范围;最后通过目标函数的平移去找到它的最值. 【考点预测】

线性规划在实际中应用广泛,因此具有很高的实用价值,所以也成为了高考的一个热点.大家在备考的时候,需要学会准确的画出可行域,然后会平移目标曲线.

8.等比数列的通项公式 【知识点的认识】 1.等比数列的定义

如果一个数列从第2项起,每一项与它的前一项的比值等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0).从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数. 2.等比数列的通项公式

设等比数列{an}的首项为a1,公比为q,则它的通项an=a1?qn 3.等比中项:

如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比

2

中项. G=a?b (ab≠0) 4.等比数列的常用性质

(1)通项公式的推广:an=am?qm,(n,m∈N*).(2)若{an}为等比数列,且k+l=m+n,(k,l,m,n∈N*),则 ak?al=am?an

(3)若{an},{bn}(项数相同)是等比数列,则{λan}(λ≠0),{a},{an?bn},仍是等比数列.

(4)单调性:

?{an}是递增数列;

或?

{an}是递

n﹣

﹣1

减数列;q=1?{an}是常数列;q<0?{an}是摆动数列.

第32页(共53页)

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

3、用定积分求平面图形的面积的步骤 a)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式; b)解方程组求出每两条曲线的交点,以确定积分的上、下限; c)具体计算定积分,求出图形的面积. 5.利用导数研究曲线上某点切线方程 【考点描述】 利用导数来求曲线某点的切线方程是高考中的一个常考点,它既可以考查学生求导能力,也考察了学生对导数意义的理解,还考察的直线方程的求法,以为包含了几个比较重要的基本点,所以在高考出题时备受青睐.我们在解答这类题的时候关键找好两点,第一找到切线的斜率;第二告诉的这点其实也就是直线上的一个点,在知道斜率的情况下可以用点斜式把直线方程求出来. 【实例解析】 例:已知函数y=xlnx,求这个函数的图象在点x=1处的切线方程. 解:k=y'|x=1=

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com