当前位置:首页 > 【全国百强校word】衡水金卷普通高等学校招生全国统一考试模拟试卷 分科综合卷 理科数学(一)
c1???a3,??120.解:(1)由已知得??2c?b?22,
?2222?c?a?b,??解得a?9,b?8,c?1,
222x2y2??1. ∴椭圆C的方程为98(2)设M?x1,y1?,N?x2,y2?,MN的中点为E?x0,y0?,点G?m,0?,使得GM?GN, 则GE?MN.
?y?kx?2,?22由?x2y2得?8?9k?x?36kx?36?0,
??1,?8?9由??0,得k?R. 36k, 29k?8?18k16∴x0?. ,y?kx?2?009k2?89k2?81∵GE?MN,∴kGE??, k16?0219k?8即??, ?18kk9k2?8?2k?2∴m?. ?9k2?89k?8k∴x1?x2??当k?0时,9k?2288时,取等号), ?29?8?122(当且仅当9k?,即k?3kk∴?2?m?0; 1222288??122(当且仅当9k?,即k??时,取等号),∴0?m?,
312kk当k?0时,9k?
∴点G的横坐标的取值范围为???2??2??0,,0?U?. ???12??12????内单调递增, 21.解:(1)∵函数f?x?在区间?0,∴f'(x)?e?即a?e?xx1???内恒成立. ?0在区间?0,x?a???内恒成立. ?x在区间?0,?x记g?x??e?x,则g'(x)??e?x?1?0恒成立,
???内单调递减, ∴g?x?在区间?0,∴g?x??g?0??1,∴a?1,
???. 即实数a的取值范围为?1,(2)∵0?a?21x,f'(x)?e?, 3x?ax记h(x)?f'(x),则h'(x)?e?1?0, ?x?a?2知f'(x)在区间??a,???内单调递增. 又∵f'(0)?1?11?0,f'(1)?e??0, aa?a∴f'(x)在区间??a,???内存在唯一的零点x0, 即f'(x0)?ex0?1?0, x0?a于是ex0?1,x0??ln?x0?a?. x0?a当?a?x?x0时,f'(x)?0,f(x)单调递减; 当x?x0时,f'(x)?0,f(x)单调递增. ∴f?x?min?f?x0??ex0?2a?ln(x0?a)
?11?2a?x0?x0?a??3a?2?3a, x0?ax0?a当且仅当x0?a?1时,取等号.
由0?a?2,得2?3a?0, 3∴f?x?min?f?x0??0,即函数f?x?没有零点. 22.解:(1)由?sin?????????3, 3?得
13?sin???cos??3, 22将x??cos?,y??sin?代入,得直线l的直角坐标方程为3x?y?6?0. 椭圆C的参数方程为??x?2cos?,(?为参数).
?y?4sin?(2)因为点M在椭圆C上, 所以设M(2cos?,4sin?),
则23x?y?1?43cos??4sin??1 ????8sin?????1?9, 3??当且仅当sin??????????1时,取等号, 3?max所以23x?y?1?9. 23.解:(1)不等式f?x??f(2?x)?4, 即x?2?x?4,
此不等式等价于??x?0,
?2?x?x?4,?0?x?2,?x?2,或?或?
2?x?x?4,x?2?x?4.??解得?1?x?0,或0?x?2,或2?x?3.
所以不等式f?x??f(2?x)?4的解集为?x|?1?x?3?. (2)f?x??f(x)?f(2?x)?|x?2|?|x|,
因为x?2?x?|?x?2??x|?2, 当且仅当x?0时,取等号, 所以g?x??2,即m?2, 因为a,b为正实数,
所以af?b??bf?a??ab?2?ba?2
?ab?2a?ab?2b??ab?2a???ab?2b? ?2a?b?ma?b,
当且仅当?b?2??a?2??0时,取等号. 即af?b??bf?a??m|?a?b?|.
共分享92篇相关文档