当前位置:首页 > 2019年浙江省嘉兴市高三教学测试(二)数学(理)试题(含答案)
设P(0,?2,0),若A1C?平面PBC1, 1???A1C?(?1,2,?1),BC1?(?1,0,1),
BP?(?1,2??2,0),则 1?????1?A1C?BP?0,解得 ?????3?AC?BC?01?1z(Ⅱ)P1(0,2,0),P2(0,1,0)
设平面BC1P1与平面BC1P2的法向量分别是n1,n2 ?????n1?BP1?0,解得n1?(1,?1,1) ????n?BC?01?1D1A1B1C1DAxP1P2CyB??????n?BP?0n?n42?22,解得n2?(3,?2,3),cos???12 ?????33?n?BC?0|n1|?|n2|1?218.(本题满分15分)
已知m?R,函数f(x)??x2?(3?2m)x?2?m. (Ⅰ)若0?m?1,求|f(x)|在[?1,1]上的最大值g(m); 2(Ⅱ)对任意的m?(0,1],若f(x)在[0,m]上的最大值为h(m),求h(m)的最大值. 解:(Ⅰ)∵对称轴为x?3?2m?1 2 ∴g(m)?max{|f(?1)|,|f(1)|}?max{|3m?2|,|4?m|} ?max2{?3m,4?m} 又∵(4?m)?(2?3m)?2?2m?0 ∴g(m)?4?m. (Ⅱ)函数的对称轴为x? ①
3?2m,且函数开口向下 23?2m3, ?0,即m?(舍去)
22②0? ③
33?2m173?2m)?m2?2m? ?m,即?m?1,h(m)?f(24243?2m3?m,即0?m?,h(m)?f(m)??3m2?4m?2
42173?2m?2m??m?1?10244 ∴h(m)?? , 当m?时,取得最大值
3233??3m?4m?20?m?4?19.(本题满分15分)
x2y2已知椭圆C1:??1,直线l1:y?kx?m(m?0)与圆C2:(x?1)2?y2?1相切且与椭圆
164C1交于A,B两点.
y4,求m的值; 3(Ⅰ)若线段AB中点的横坐标为
CAO(Ⅱ)过原点O作l1的平行线l2交椭圆于C,D两点,设
|AB|??|CD|,求?的最小值.
BxD(第19题)
2解:(Ⅰ)l1:y?kx?m代入C1:xy??1得 1642(1?4k2)x2?8kmx?4(m2?4)?0,??0恒成立,
8km?x?x??12??1?4k2,所以?4km?4①, 设A(x1,y1),B(x2,y2),则?24(m?4)1?4k23?x1x2??1?4k2?1?m2?1,得k?又d?②,联立①②得m4?m2?2?0,
2m1?k2|k?m|解得m?2.
22416k2?m2?42416k?m?4(Ⅱ)由(Ⅰ)得|x1?x2|?,所以|AB|?1?k?,
1?4k21?4k28x2y2162|CD|?1?k?把l2:y?kx代入C1:,所以, ??1得x2?221641?4k1?4k1m2|AB|16k2?m2?41m2?4?所以?? ??4?2222|CD|21?m1?4k21?4k1?4()22m1m4116, ?4?4?4??112323m?m2?12(2?)?24m当m?2,k??62,?取最小值. 4320.(本题满分15分)
已知点列Pn(xn,2)与An(an,0)满足xn?1?xn,PnPn?1?AnPn?1,且PnPn?1?AnPn?1,其中xnn?N*
,x1?1.
y(Ⅰ)求xn?1与xn的关系式;
P1(Ⅱ)求证:n2?x22?x23???x2n?1?4n2.
P2P3 OA1A2x (第20题)
解
:
(Ⅰ)
P22nPn?1?(xn?1?xn,x?n?1x),A2nPn?1?(xn?1?an,x) nn?1(x22n?1?xn,x?)?(x?a24n?1n,)?0得xn?1?an?①, n?1xnxn?1x2n?1?xn又(x?(224n?1?xn)2x?x)2?(xn?1?an)2?n?1nx2②
n?1把①代入②,得(x44n?1?xn)2(1?x22)?2(1?422), n?1?xnxn?1xn?1?xn得(xx42n?1?n)2?x2,所以xn?1?xn?.n?1x
n?1(Ⅱ)x2n?1?xn?x,所以2?x222n?1?xnxn?1?xn?1?xn,
n?1n所以x2n?1?1???x2i?1?x2i??2n,所以xn?1?2n?1,
i?1x22?x23???x2n?1?3?5???(2n?1)?n(n?2)?n2.
nn又n?2时,x2nn?1?x2??(xi?1?xi)??2i?2?i?2xi?1?i?22i?1,
因为
242i?1?2i?1?2i?1?42i?2i?2?22(i?1?i),
所以xn?1?x2??(2i?2n2(i?1?i)?22(n?1?2)
2所以xn?1?8n?8?2,所以xn?1?8n?8?4?48n?8?8n?4, 2222?x3???xn又x2?2,所以x2?1?4[1?3???(2n?1)]?4n.
欢迎访问“高中试卷网”——http://sj.fjjy.org
共分享92篇相关文档