当前位置:首页 > 由入门到精通 - PID自动调节纵横谈
正接触过复杂的自动调节系统。
是的,火电厂自动调节系统要复杂些。可惜我没有机会接触更为复杂的自动调节系统,深为遗憾!至今为止,我所接触到最复杂的自动调节系统,无非是火电厂的蒸汽温度、汽包水位、蒸汽压力,还有一个大杂烩——协调。至于脱硫方面的,都交给运行自行调节,懒得去管。 2-8 整定比例带
整定参数要根据上面提到的孤立分析的原则,先把系统设置为纯比例作用。也就是说积分时间无穷大,微分增益为0。
最传统、原始的提法是比例带。比例带是输入偏差和输出数值相除的差。比例带越大,比例作用越弱。据说美国人喜欢直来直去,他们提出一个比例增益的概念,就是说比例作用越强,比例增益也就越大。具体的做法就是比例增益等于比例带的倒数。
整定比例作用比较笨的办法,逐渐加大比例作用,一直到系统发生等幅震荡,然后在这个基础上适当减小比例作用即可,或者把比例增益乘以0.6~0.8。
不过上述方法是有一点点风险的。有的系统不允许设定值偏差大,初学者要想明显地看出来什么是等幅震荡,就有可能威胁系统安全。并且,在比例作用比较弱的时候,波动曲线往往也是震荡着的,有人甚至会把极弱参数下的波动当成了震荡,结果是系统始终难以稳定。
那么到底怎么判断震荡呢?一般来说,对于一个简单的单回路调节系统,比例作用很强的时候,振荡周期是很有规律的,基本上呈正弦波形状。而极弱参数下的波动也有一定的周期,但是在一个波动周期内,往往参杂了几个小波峰。根据这个我们几乎大致可以判断比例作用了。
注意我的用词,“几乎大致”。是的,仅仅这样我们也不能完全确定比例作用一定是强是弱。有的系统也不允许我们这样折腾。还有没有办法?
整定参数说实话,是不那么容易的。前面我说很简单,是给你们树立必胜的信念,现在说很困难,是告诉你们不可能一蹴而就,需要持之以恒的努力,需要不断的探索。这篇文章最难写的是哪一段?第一章很容易,手头有资料,平时多留心,就可以写出来。第三章很难写,但是只要自己多观察、多体会、多分析、多积累,应该也能写出来。只有第二章的这一节最难写。我花费了好几天都在考虑,怎么表达出来我的经验心得。好在自动控制也不是高不可攀,我想到了一个表述办法:
亲自操作执行机构,或者查找运行操作的历史趋势,查找或者令执行机构的输出有一个足够的阶跃量——这个阶跃量要足够大,但是千万不能给稳定运行带来危险——然后观察被调量多久之后开始有响应。记录下响应时间。然后在整定参数的时候,你所整定的系统的波动周期,大约是你记录响应时间的3-8倍。
声明:这只是个大约的数值。我也仅仅是在近几天内观察考虑的。没有经过长久大量的观察。目前来看,这个思路应该是对的,不排除意外的可能。
最终你所整定的系统,其调节效果应该是被调量波动小而平缓。在一个扰动过来之后,被调量的波动应该是一很有名的说法:“一大一小两个波”。呵呵,这个字,目前属于敏感词汇。
有人说:很麻烦,我的调节系统不容易看到调节周期。哦,恭喜你,你的系统整定工作做得很好。
不管是被调量还是调节输出,其曲线都不应该有强烈的周期特征。
曾经有个人跟我说:你看我的调节系统整定得多好,被调量的曲线简直跟正弦波一样好看。我回答说:不用问,调节输出也跟正弦波一样吧?他说是。那你的执行机构还不跟正弦波一样不能歇着啊?这样的调节系统的整定工作是不够好的,还有优化空间的。
自动调节的困难还在于:即使是很老练很在行的整定者,也不见得整定效果就很好。近两年我见了一些自动调节的论文,有的论文中附有调节效果曲线。根据我的分析,有一些论文所表现的调节质量并不够好,还有很大的参数优化空间。。
有许多人看系统难以稳定,就认为是控制策略的问题,就去修改控制策略。最终使得控制策略庞大臃肿。控制策略臃肿的不利后果有三个:
1、 不利于检查问题和整定参数,程序越复杂越不利;
2、 容易出现编程错误甚至前后矛盾;
3、 增加了系统负担。DCS系统要求单机负荷率要低。DCS中,影响负荷率的最大因素就是模拟量运算。自动调节系统的模拟量运算最大。所以,臃肿的调节系统增加了系统负荷率。
具体的论文就不说了。只说最近论坛上经常对给水三冲量调节系统发表质疑。我个人认为:给水三冲量自动调节系统是很完善很完美的,你之所以觉得不够好,是因为你没有把参数整定好。如果你不认可,我给你整定,保证能让你的系统在经典的三冲量调节系统下,运行得很好。
所以能够通过整定参数解决的问题,最好不通过控制策略来解决。所以,就要求我们广大的自动调节工作者,在整定参数方面打好基本功。
我说过,我感到整定参数不仅仅是一门技术,而且像一门艺术。因为“艺无止境”。
2-9 整定积分时间
前面咱们已经说过,积分作用最容易被人误解。一个初学者往往过分注重积分作用,一个整定好手往往又漠视积分作用。咱们先对初学者说怎么认识积分作用。
对于主调来说,主调的目的就是为了消除静态偏差。如果能够消除静态偏差,积分作用就可以尽量的小。
在整定比例作用的时候,积分作用先取消。比例作用整定好的时候,就需要逐渐加强积分作用,直到消除静差为止。
我们需要注意的是:一般情况下,如果比例参数设置不合理,那么静差也往往难以消除。在没有设置好比例作用的时候,初学者往往以为是积分作用不够强,就一再加强比例作用,结果造成了积分的干扰。
那么积分作用设置多少合理?咱们还要拐回头,看第2-5节。为了查看方便,我重新把图5粘贴过来。
上图中,我们最需要关注的几个点是:t5、t6、t7。在t5,t7之间,t6的时刻反映了积分的强度。t6过于靠近t5,则积分作用过弱;t6过于靠近t7,则积分作用过强。t6所处的位置,应该在t5、t7之间的1/3靠前一点。也就是说,t6的位置在,t5~(t7—t5)*1/2之间。
为了记住(t7—t5)之间的这个特征点,我们可以把(t7—t5)*1/3的这个区域叫做积分拐点。
积分拐点这个概念很重要,输出的拐点不能比积分拐点更靠后
为什么积分要这么弱?
当被调量回调的时候(t5时刻),说明调节器让执行机构发挥了调节作用,此时调节机构的开度足以控制被调量不会偏差更大,为了消除静态偏差,可以保持这个开度,或者让执行机构稍微继续动作一点即可。如果此时被调量回调迅速,则说明执行机构的调节已经过量,那么必须也要让执行机构回调,执行机构的回调是怎样产生的?是比例作用克服了积分作用而产生的,是比例和积分的叠加:Tout(δ)+Tout(i)。而此时Tout(δ)和Tout(i)所调节的方向是不一样的,一个为正,一个为负。
从上面的叙述,我们还可以验证前面的一个推理:积分作用和比例作用是相对的。当比例作用强的时候,积分也可以随之增强;比例作用弱的时候,积分也必须随之下调。积分作用只是辅助比例作用进行调节,它仅仅是为了消除静态偏差。
还是那句话:搞自动的要善于灵活处理问题,一方面要把握原则,一方面要有灵活性。切不可因为刚才调好了积分作用,就把积分参数固定死再也不变了。积分作用设置的关键在于t6的位置,要记住:不能超过积分拐点。
对于积分作用在特殊情况下的妙用,下一章会提到。咱现在还是牢牢掌握原则吧。 2-10 整定微分作用
微分作用比较容易判断,那就是PID输出“毛刺”过多。
一般来说,微分作用包含两个参数:微分增益和微分时间。实际微分环节在前面已经说过。图4就是实际应用中的微分环节。
其实理想的微分环节并不是这样的。当阶跃扰动来临的时候,理想微分环节带来的调节输出是无穷大的。如下图所示:
理想微分环节
为了工程应用方便,人们设计了实际微分环节。微分的目的许多人都知道:它具有超前调节的功能。
微分为什么具有超前调节作用?
1、波动来临时,不管波动的幅度有多大,只要波动的速度够大,调节器就会令输出大幅度调整。也就是说,波动即将来临的时候,波动的征兆就是被调量的曲线开始上升。对于比例和积分作用来说,开始上升不意味着大幅度调节;对于微分作用来说,开始上升就意味着调节进行了,因为“开始”的时候,如果速度上去了,输出就可以有一个大幅度的调整。这是超前调节的作用之一。见图6的T8时刻。
2、波动结束后,如果调节器调节合理,一般被调量经过一个静止期后,还会稍微回调一点。在被调量处于静止期间,因为微分时间的作用,不等被调量回调,调节器首先回调。这是微分的超前作用之二。见图6的T7时刻。
在微分增益增大的时候,一定要考虑到微分时间的调整。否则调节曲线上会有很多毛刺。毛刺直接影响到执行机构的频繁动作,一般来说,它是有害的。
好的调节效果,往往在调节曲线上是看不到毛刺的。只可以在输出曲线上看到一个突出的陡升或者陡降。
要合理利用微粉增益和微分时间的搭配,会取得很好的调节效果。
有许多人牢牢记住了“微分的超前调节作用”,只要觉得系统不够快,就会加微分。这是一种懒人的思维。系统快不快不能看表面现象,有许多系统往往是参数整定不好造成的震荡。震荡发生的时候,往往急得初学者恨不得马上让系统回调,不能马上回调,就想到了微分。要记住:震荡的产生可能与三个参数都有关。一定要认真判读震荡曲线的特征,分辨是那个因素造成的,然后对症下药才能够抑制震荡。
还有一些人不管三七二十一,把所有的系统都使用比例积分微分。比例积分可以都使用,但有些系统使用微分是不恰当的。
共分享92篇相关文档