当前位置:首页 > 独轮机器人
后GYROBO向前移动并在一个狭窄的空间中左转。但是,在初始运动中,为了向前推进车轮在地面上滑动。图18表明GYROBO可以以一个缓慢的速度在狭窄的空间转向。
不幸的是,由于机械限制的缘故,当前设计的GYROBO无法完成一个360度转动任务。为了让GYROBO做出360度转动,飞轮不得不一直朝一个方向倾斜。然而,由于有限的内轮内部空间,这种配置不允许应用在当前版本。
图18中对应的倾斜角度显示于图19中。蓝色实线表示的是给定的倾斜角度,红色实线表示的是实际的倾斜角度。我们看到倾斜角保持负下降,因为GYROBO在左方向旋转。 GYROBO是从0到16s在一点保持平衡,16秒后开始按照所需的侧倾角移动。
(五) 积极的障碍攀爬控制
最后的实验是检查GYROBO驱动的稳健性。测试GYROBO爬过户外环境中的障碍物。攀越障碍是相当具有挑战性的因为道路不是平坦的而是倾斜的。 GYROBO应保持一定的速度来翻越障碍物。GYROBO的驱动被操作者通过远程操作控制。经过多次实验,GYROBO成功地翻过障碍物,如图20。 图20给出了实验结果的过程的图像。
八、 结论
通过实际的机电一体化方法我们开发了单轮机器人并且测试了它的平衡和驱动控制。多次修改GYROBO的机械设计后,实用的机电一体化方法允许线性控制器稳定。重定位系统的重心使其在中心,以便让系统对称,这对一个成功的平衡任务是重要的因素。第二个重要的机电一体化方法是降低高速飞轮的振动,这些振动将会传到轮子的所有零件上。在修正了机械故障后,传感器滤波和其它传感器的控制方法认为是第三种机电一体化办法。虽然们使用的传感器不令人满意,我们通过线性控制器设法控制单车轮机器人。
在实际演示中,GYROBO成功地跟随了由远程操作器给定的轨迹。测量滚转角和偏航角都使用了线性控制器,完成了控制任务,尽管偏航方向的传感器信号没有被不利用。积极的操纵控制攀越的任务障碍已被证实。在将来,一个额外的传感器可以被添加到当前的硬件进行更精确的测量和先进的控制算法如模糊方法用来设计平衡的偏移角以便提高性能。
鸣谢
这个研究部分由韩国研究基金(KRF 2011-0027055)和韩国知识经济部的机器人服务自主智能操作中心(AIM)以及NIPA监督的对机器人专家人力支援发展纲要支持。
参考文献
[1] Segway. < http://www.segway.com>.
[2] Pathak K, Franch J, Agrawal S. Velocity and position control of a wheeled
inverted pendulum by partial feedback linearization. IEEE Trans Robotics 2005;21:505–13 .
[3] Jeong SH, Takayuki T. Wheeled inverted pendulum type assistant robot: design concept and mobile control. In: IEEE IROS; 2007. p. 1932–7.
[4] Kim SS, Jung S. Control experiment of a wheel-driven mobile inverted pendulum using neural network. IEEE Trans Control Syst Technol 2008; 16(2):297–303 .
[5] Noh JS, Lee GH, Jung S. Position control of a mobile inverted pendulum system using radial basis function network. Int J Control Automat Syst Eng 2010;8(1): 157–62.
[6] Noh JS, Lee GH, Choi HJ, Jung S. Robust control of a mobile inverted pendulum system using RBF neural network controller. In: IEEE ROBIO; 2008. p. 1932–7.
[7] Aoki T, Murayama Y, Hirose S. Mechanical design of three-wheeled lunar rover; ‘‘Tri-Star IV’’. In: IEEE international conference on robotics and automation (ICRA); 2011. p. 2198–203.
[8] Rui CL, McClamroch NH. Stabilization and asymptotic path tracking of a rolling disk. In: IEEE conf on decision & control; 1995. p. 4294–9.
[9] Au KW, Xu Y. Decoupled dynamics and stabilization of single wheel robot. In: IEEE/RSJ international conference on intelligent robots & system; 1999.
[10] Xu Y, Au KW. Stabilization and path following of a single wheel robot. IEEE/ASME Trans Mechatron 2004;9(2):407–19.
[11] Ou Y, Xu Y. Stabilization and line tracking of the gyroscopically stabilized robot. In: IEEE international conference on robotics & automation, May 2002.
[12] Nandy GC, Xu YS. Dynamic model of a gyroscopic wheel. In: Proc IEEE int conf on robotics and automation; 1998. p. 2683–8.
[13] Xu YS, Au KW, Nandy GC, Brown HB. Analysis of actuation and dynamic balancing for a single wheel robot. In: Proc IEEE int conf on intelligent robots and systems; 1998. p. 1789–94.
[14] Xu YS, Au Kwok Wai, Brown HB. Dynamic mobility with single-wheel configuration. Int J Robotics Res 1999;18(7):728–38.
[15] Xu YS, Oh YS. Control of Single Wheel Robots. Springer; 2005.
[16] Nukulwuthiopas W, Laowattana S, Maneewarn T. Dynamic modeling of a one-wheel robot by using Kane’s method. In: IEEE ICIT; 2002. p. 524–9.
[17] Motomura K, Kawakami A, Hirose S. Development of arm equipped single wheel rover: effective arm-posture-based steering method. In: IEEE conference on robotics and automations; 2003. p. 63–8.
[18] Saleh T, Hann YH, Zhen Z, Mamun AA, Prahlad V. Design of gyroscopically
stabilized single-wheeled robot. In: IEEE conf on robotics automation, mechatronics; 2004. p. 904–8.
[19] Alasty A, Pendar H. Equations of motion of a single-wheel robot in a rough terrain. In: IEEE conf on robotics and automations; 2005. p. 879–84.
[20] Zhu Z, Mamun AA, Vadakkepat P, Lee TH. Line tracking of the gyrobot-a gyroscopically stabilized single-wheeled robot. In: IEEE conf on robotics and biomimetics; 2006. p. 293–8.
[21] Lauwers TB, Kantor GA, Hollis RL. A dynamically stable single-wheeled mobile robot with inverse mouse-ball drive. In: IEEE conf on robotics and automations; 2006. p. 2884–9.
[22] Zhu Z, Naing MP, Al-Mamun A. Integrated ADAMS + MATLAB environment for design of an autonomous single wheel robot. In: IEEE IECON; 2009. p. 2253–8.
[23] Nagarajan U, Mampetta A, Kantor GA, Hollis RL. State transition, balancing, station keeping, and yaw control for a dynamically stable single spherical wheel mobile robot. In: IEEE conf on robotics and automations; 2009. p. 998–1003.
[24] Nagarajan U, Kantor GA, Hollis RL. Trajectory planning and control of an underactuated dynamically stable single spherical wheeled mobile robot. In: IEEE conf on robotics and automations; 2009. p. 3743–8.
[25] Zhu Z, Naing MP, Mamun AA. A 3 D simulator using ADAMS for design of an autonomous gyroscopically stabilized single wheel robot. In: IEEE conference on systems, man, and cybernetics; 2009. p. 4455–60.
[26] Zhiyu S, Daliang L. Balancing control of a unicycle riding. In: Chinese control conference; 2010. p. 3250–4.
[27] Ruan X, Wang Q, Yu N. Dual-loop adaptive decoupling control for single wheeled robot. In: International conference on automation, robotics, and vision; 2010. p 2349–54.
[28] Jin HZ, Zhao J, Fan J, Lee JM. Gain-scheduling control of 6 DOF single-wheeled pendulum robot based on DIT parameterization. In: IEEE conference on robotics and automations; 2011. p. 3511–6.
[29] Kim PK, Park JH, Jung S. Experimental studies of balancing control for a disc-typed mobile robot using a neural controller: GYROBO. In: ISIC2010, multi-conference on systems and control; 2010. p. 1499.
共分享92篇相关文档