µ±Ç°Î»ÖãºÊ×Ò³ > »ùÓÚÔ±¹¤ÂúÒâ¶ÈµÄÔ±¹¤Á÷ʧÐÐΪ·ÖÎö
¢Ú 0?1£¬±íÃ÷Á©¸Ä¸ï±äÁ¿Ö®¼ä´æÔÚÕýÏà¹Ø¡£Èô?=1£¬Ôò±íÃ÷±äÁ¿¼ä´æÔÚ×ÅÍêÈ«ÕýÏà¹ØµÄ¹ØÏµ£»
¢Û?1??<0£¬±íÃ÷Á½¸ö±äÁ¿Ö®¼ä´æÔÚ¸ºÏà¹Ø¡£Èô?=-1£¬Ôò±äÁ¿¼äµÄ¹ØÏµÎªÍêÈ«¸ºÏà¹Ø£»
¢Ü?=0£¬±íʾÁ½¸ö±äÁ¿Ö®¼äÎÞÏßÐÔ¹ØÏµ-ÁãÏà¹Ø£¨Ö»ÊDZíʾÁ½¸ö±äÁ¿Ö®¼äûÓÐÏßÐÔÏà¹Ø¹ØÏµ£¬²¢²»±íʾûÓÐÆäËûÏà¹Ø¹ØÏµ£©¡£ Ñо¿ÖжÈÁ¿°üÀ¨¼ä¸ô³ß¶È£¨Scale£©¡¢¶¨Ðò³ß¶È£¨Ordinal£©¼°ÃûÒå³ß¶È£¨Nominal£©£¬¿É¸ù¾Ý±äÁ¿Êµ¼Ê¶ÈÁ¿ÖÖÀàÀ´Ñ¡¶¨¡£SPSSµÄÊýÖµÐͺÍÈÕÆÚÐͱäÁ¿Ä¬È϶ÈÁ¿Îª¼ä¸ô³ß¶È£¬×Ö·ûÐͱäÁ¿Ä¬È϶ÈÁ¿ÎªÃûÒå³ß¶È¡£ÂÛÎÄÔÚ¼ÈëÊý¾Ýʱ£¬¶Ô±äÁ¿µÄ¶¨ÒåΪÊýÖµÐÍ£¬¶øSpearman£¨Ë¹Æ¤¶ûÂü£©µÈ¼¶Ïà¹ØÓëKendall£¨¿ÏµÂ¶û£©ÖÈÏà¹ØÊÊÓÃÓÚÖÁÉÙÓÐÒ»¸ö±äÁ¿ÒÔ¶¨Ðò³ß¶È²â¶È£¬¹ÊÑ¡ÔñPearsonÏà¹ØÏµÊý½øÐзÖÎö¡£
4.1.2 Òò×Ó·ÖÎö
£¨1£©Òò×Ó·ÖÎö¸ÅÊö
Òò×Ó·ÖÎöÊÇÖ÷³É·Ö·ÖÎöµÄÍÆ¹ãÓë·¢Õ¹£¬ËùÑо¿µÄÎÊÌâÍùÍùÉæ¼°½Ï¶àµÄ±äÁ¿£¬ÇÒËüÃÇÖд󲿷ÖÓÖÊÇÏà¹ØµÄ£¬Òò´Ë½«ÕâЩÔʼ±äÁ¿×ÛºÏΪÉÙÊý¼¸¸öDZÔÚÒò×ÓÀ´±íʾ£¬ÒÔÏÔʾÔʼ±äÁ¿Ö®¼äÒÔ¼°ÓëÒò×ÓÖ®¼äµÄÏ໥¹ØÏµ£¬Ò²¿ÉÒÔ¸ù¾Ý²»Í¬µÄÒò×Ó¶Ô±äÁ¿½øÐзÖÀà¡£Òò×Ó·ÖÎöÊǶàԪͳ¼Æ·ÖÎöÖд¦Àí½«ÎªµÄÒ»ÖÖ·½·¨¡£
Òò×Ó·ÖÎö°üÀ¨RÐÍÒò×Ó·ÖÎö-¶Ô±äÁ¿×÷Òò×Ó·ÖÎöºÍQÐÍÒò×Ó·ÖÎö-¶ÔÑùÆ·×÷Òò×Ó·ÖÎö£¬±¾ÎIJÉÓÃRÐÍÒò×Ó·ÖÎö¡£ÉèÓÐp¸ö±äÁ¿X1,X2,?,Xn
Xi?ai1F,2,...,p) ¹«Ê½(4-1) 1?ai2F2???aimFm??i(i?1ʽÖÐXiΪµÚi¸ö±ê×¼»¯±äÁ¿£¬F1,F2,?,Fm³ÆÎª±äÁ¿XµÄ¹«¹²Òò×Ó»òDZÒò×Ó¡£aij³ÆÎªÒò×ÓÔØºÉ£¨Loading£©£¬ËüµÄͳ¼ÆÒâÒåÊǵÚi¸ö±äÁ¿ÓëµÚj¸ö¹«¹²Òò×ÓµÄÏà¹ØÏµÊý£¬Òò´ËµÚi¸ö±äÁ¿ÊÇXjÔÚµÚj¸ö¹«¹²Òò×ÓFjÉϵĸººÉ¡£(aij)p?m³ÆÎªÒò×ÓÔØºÉ¾ØÕó£¬mΪ¹«¹²Òò×ÓµÄÊýÄ¿¡£?i³ÆÎªµÚi¸ö±äÁ¿µÄÌØÊâÒò×Ó£¬ÒªÇóÌØÊâÒò×ÓÖ®¼äÊÇÏ໥¶ÀÁ¢µÄ£¬ÇÒËüÓ빫¹²Òò×ÓFÒ²ÊÇÏ໥¶ÀÁ¢µÄ¡£
Ä£ÐÍÖÐÒò×ÓÔØºÉÕóµÄ¹À¼Æ·½·¨ºÜ¶à£¬ÆäÖз½²î×î´óÕý½»Ðýת£¨Varimax£©ÊÇ×î³£Óõ쬴ËʱËùµÃµ½µÄ¹«Òò×ÓF1,F2,?,FmÊDZ˴ËÏ໥¶ÀÁ¢µÄ£¬ÇÒÈçÖ÷³É·Ö·ÖÎöÒ»Ñù£¬
¸÷¸ö¹«¹²Òò×ÓËù½âÊÍ×Ü·½²îµÄ±ÈÀýÒÀ´ÎµÝ¼õ£¬µÚÒ»¸ö¹«Òò×ÓËù½âÊ͵Ä×Ü·½²îµÄ±ÈÀýÔ½´ó£¬ÒÀ´ÎÀàÍÆ¡£ £¨2£©Òò×ӵ÷ּÆË㣺
?£º ¹«¹²Òò×ÓµÄFjµÄ¹À¼ÆFj??bX?bX?...?bX(j?1,2,...,m)Fjj11j22jpp ¹«Ê½(4-1)
ʽÖУº
X1,X2,?,Xp¡ª¡ª±ê×¼»¯±äÁ¿£»
£» bj1,bj2,...,bjp¡ª¡ªÒò×ӵ÷ÖϵÊý£¨Factor Score Coeffecient£©
?¡ª¡ªµÚj¸öÒò×ӵĹÀ¼ÆÖµ£¬Ò²³ÆÎªÒò×ӵ÷֣¨Factor Score£©F¡£
j4.2 ÐŶÈÓëЧ¶È¼ìÑé
4.2.1 ÐŶȼìÑé
ÐŶÈ(Reliability)¼´¿É¿¿ÐÔ£¬ËüÊÇÖ¸²âÁ¿½á¹ûµÄÒ»ÖÂÐԳ̶ȻòÕ߿ɿ¿ÐԳ̶ȣ¬ÎªÁËÁ˽âÎʾíµÄ¿É¿¿ÐÔºÍÓÐЧÐÔ£¬Òª×öÐŶȼìÑé¡£ÐŶȷÖÎöÊÇÒ»ÖÖ²â¶È×ÛºÏÆÀ¼ÛÌåϵÊÇ·ñ¾ßÓÐÒ»¶¨µÄÎȶ¨ÐԺͿɿ¿ÐÔµÄÓÐЧ·ÖÎö·½·¨£¬ÔÚ¶ÔÎÊ¾í½øÐÐÊý¾Ý·ÖÎöǰ£¬±Ø
10
Ð뿼²ìÆäÐŶȣ¬ÒÔÈ·±£²âÁ¿µÄÖÊÁ¿¡£ÐŶȼìÑéµÄ·½·¨Óкܶ࣬ÄÚ²¿Ò»ÖÂÐŶÈ(Internal Consistent Reliability)ÊÇĿǰ±È½ÏÁ÷ÐжøÇÒЧ¹û½ÏºÃµÄÐÅ¶ÈÆÀ¶¨·½·¨£¬´Ó²âÁ¿¹¹Ë¼²ã´Î»¯ÈëÊÖ£¬Ê¹²âÁ¿ÏîÄ¿ÐγÉÒ»¶¨µÄÄÚ²¿½á¹¹£¬²¢ÒÔÄÚ²¿½á¹¹µÄÒ»ÖÂÐԳ̶ȣ¬¶Ô²âÁ¿ÐŶÈ×ö³öÆÀ¶¨¡£¿ËÀʰ͹þ(Cronbach1951)Ìá³öµÄÒ»ÖÖÄÚ²¿Ò»ÖÂÐÔϵÊý¡ª¡ªAlphaϵÊý£¬×¼È·µØ·´Ó³³ö²âÁ¿ÏîÄ¿µÄÒ»ÖÂÐԳ̶ȺÍÄÚ²¿½á¹¹µÄÁ¼ºÃÐÔ£¬ÊÇĿǰʹÓÃ×î¹ã·ºµÄÐŶÈÖ¸±ê£¬ÕâÖÖ·½·¨ÊÊÓÃÓÚ̬¶È¡¢Òâ¼ûʽÎʾí(Á¿±í)µÄÐŶȷÖÎö£¬±¾Ñо¿Ö÷Òª²ÉÓÿËÀʰ͹þ(cronbach)aϵÊýÀ´·ÖÎöÐŶȡ£
¸ù¾ÝNunnallyµÄ½¨Ò飬AlphaÖµµÄÆÀÅбê×¼ÊÇ:ÈôAlpha<0.35ΪµÍ¿É¿¿ÐÔ£»0.35¡ÜAlpha<0.7 ÔòÉпɣ»Alphaa¡Ý0.7ÔòÊôÓڸ߿ɿ¿ÐÔ¡£
±í 4-1 Á¿±íµÄÐŶÈϵÊý
Á¿±í
Ô±¹¤ÂúÒâ¶ÈÁ¿±í Á÷ʧÇãÏòÁ¿±í
N of Items 19 5
Cronbach's Alpha .732 .582
Èç±í4-1£¬Ô±¹¤ÂúÒâ¶ÈÁ¿±íÓëÁ÷ʧÇãÏòÁ¿±íµÄAlphaϵÊý´óÓÚ0.35£¬ÐŶÈÉпɣ¬ÄÚ²¿Ò»ÖÂÐԳ̶ÈÁ¼ºÃ£¬ËùÒÔÎʾí²âÁ¿½á¹ûÊǿɿ¿µÄ¡£
4.2.2 Ч¶È¼ìÑé
Ч¶È(Vahdity)¼´ÓÐЧÐÔ£¬ËüÊÇÖ¸²âÁ¿¹¤¾ß»òÊÖ¶ÎÄܹ»×¼È·²â³öËùÐè²âÁ¿ÊÂÎïµÄ³Ì¶È£¬ËüÊDzâÑé·ÖÊýÁ¿±íËùÒª²âÁ¿µÄÐÄÀíÌØÖʵij̶ȡ£Ð§¶ÈÊÇ¿ÆÑ§²âÁ¿¹¤¾ß×îÖØÒªµÄ±Ø±¸Ìõ¼þ£¬Ò»¸ö²âÑéÈôÎÞЧ¶È£¬ÔòÎÞÂÛ¾ßÓÐÆäËûʲôÓŵ㣬һÂÉÎÞ·¨·¢»ÓÆäÕæÕýµÄ¹¦ÄÜ¡£±äÁ¿¼äµÄÏà¹ØÐÔÊǽøÐÐÒò×Ó·ÖÎöµÄÏȾöÌõ¼þ£¬±äÁ¿¼äµÄÏà¹ØÌØµãÓÃBartlettÇòÐͼìÑé½øÐмì²â¡£Ñù±¾Êʵ±ÐÔϵÊýKMOÊÇKaiser-Meyer-OlkinµÄÈ¡ÑùÊʶÈÐÔ¶ÈÁ¿£¬¸ù¾ÝѧÕßKaiser(1974)¹Ûµã£ºKMOϵÊýÔÚ0.90ÒÔÉϷdz£ÊʺϽøÐÐÒò×Ó·ÖÎö£¬ÔÚ0.50¡ª0.90Ö®¼äÊʺϽøÐÐÒò×Ó·ÖÎö£¬ÔÚ0.50ÒÔÏÂÔò²»ÊʺϽøÐÐÒò×Ó·ÖÎö¡£BartlettÇò¶È¼ìÑ鏸³öµÄÏà°é¸ÅÂÊ0.000£¬Ð¡ÓÚÏÔÖøÐÔˮƽ0.050£¬Òò´Ë£¬¾Ü¾øBartlettÇò¶È¼ìÑéµÄÁã¼ÙÉ裬ÊʺÏÓÚÒò×Ó¼ìÑé¡£
±í 4-2 Ô±¹¤ÂúÒâ¶ÈÁ¿±íKMOϵÊýBartlett's Test¼ìÑé
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. Bartlett's Test of Sphericity Approx. Chi-Square df Sig. ±í 4-3 Á÷ʧÇãÏòÁ¿±íKMOϵÊýBartlett's Test¼ìÑé
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. Bartlett's Test of Sphericity Approx. Chi-Square df Sig. .646 63.583 15 .000 .679 391.160 190 .000 ±í4-2Óë±í4-3¸ø³öÁËKMOºÍBartlettÇò¶È¼ìÑé½á¹û£¬ÆäÖУ¬KMOֵΪ0.679¡¢0.646£¬BartlettÇòÐμìÑ鿨·½ÖµÎª391.160¡¢63.583£¬×ÔÓɶÈ190¡¢15£¬ÏÔÖøÐÔ¸ÅÂÊ
11
£¨Sig£©Îª0.000<0.001¸ß¶ÈÏÔÖø£¬ÇòÐμÙÉè±»¾Ü¾ø£¬±íÃ÷Îʾí¸÷ÏîÄ¿¼ä²¢·Ç¶ÀÁ¢£¬È¡ÖµÊÇÓÐЧµÄ¡£¼¸¸öÖ¸±êµÄ½á¹û¶¼ËµÃ÷Êý¾ÝÊÇÓÐЧµÄ£¬¶øÇÒ·ûºÏÒò×Ó·ÖÎöµÄKMOϵÊýBartlett's Test¼ìÑé¡£
4.3Ô±¹¤ÂúÒâ¶ÈÁ¿±íÒò×Ó·ÖÎö
4.3.1Ô±¹¤ÂúÒâ¶È¸÷ÒòËØÏà¹Ø·ÖÎö
¶ÔÔ±¹¤Á÷ʧÐÐΪÁ¿±í²ÉÓÃÒò×Ó·ÖÎö·¨ÌáÈ¡¹Ø¼üÒò×Ó£¬½«ÌáÈ¡µÄÒò×Ó¶¨ÒåΪ±äÁ¿£¬Í¨¹ýÌáÈ¡µÄÒò×Ó£¬Ñо¿Ô±¹¤ÂúÒâ¶ÈÓëÁ÷ʧÇãÏòµÄ¹ØÏµ¡£µ«Ç°ÌáÊÇÏȶÔÁ¿±íÖи÷ÒòËØµÄÏà¹ØÐÔ×÷·ÖÎö£¬Ö»Óи÷ÒòËØÏà¹Ø£¬²Å¿ÉÄÜÌáÈ¡³öÖ÷Òò×Ó£¬ÇÒÌáÈ¡µÄÒò×Ó¾ßÓдú±íÐÔ¡£
±í4-4 Ô±¹¤ÂúÒâ¶È²¿·ÖÁ¿±í¼äÏà¹ØÏµÊý±í
Ã÷È·¾¼ÍÈËÃ÷Îú·¢Õ¹Çå³þ¹«Ë¾¸ÚλҪÇó¿É³ÐÊܹ¤¹ÜÀíÈËÔ±¸ÚλְÔð µÀ· ÒµÎñ·¶Î§ ºÏÀí ×÷Ç¿¶È ÄÜÁ¦¸ß 1 .378** .000 .239* .020 .024 .820 .102 .326 .226* .027 .378** .000 1 .243* .018 .114 .273 .079 .444 .042 .189 .239* .020 .243* .018 1 .188 .068 .133 .197 .011 .914 .024 .820 .114 .273 .188 .068 1 .481** .000 .124 .233 .102 .326 .079 .444 .133 .197 .481** .000 1 .128 .218 .226* .027 .042 .189 .011 .914 .124 .233 .128 .218 1 Ã÷È·¾Pearson ¼ÍÈ˸ÚCorrelation λְÔð Sig. (2-tailed) Ã÷Îú·¢Pearson Õ¹µÀ· Correlation Sig. (2-tailed) Çå³þ¹«Pearson ˾ҵÎñCorrelation ·¶Î§ Sig. (2-tailed) ¸ÚλҪPearson ÇóºÏÀí Correlation Sig. (2-tailed) ¿É³ÐÊÜPearson ¹¤×÷Ç¿Correlation Sig. (2-tailed) ¶È ¹ÜÀíÈËPearson Ô±ÄÜÁ¦Correlation Sig. (2-tailed) ¸ß **. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).
ͨ¹ý¶ÔÔ±¹¤ÂúÒâ¶ÈÁ¿±í¸÷ÒòËØÏà¹Ø·ÖÎö£¬µÃ³ö²¿·ÖÏîÄ¿Ïà¹ØÏµÊý¾ØÕó£¬Óɱí4-4·´Ó³³ö£¬Ô±¹¤ÂúÒâ¶È²¿·ÖÒòËØÔÚ0.05ºÍ0.01ÏÔÖøË®Æ½ÉÏ×ÜÌåÏà¹ØÐÔ½ÏÇ¿£¬ÈÏΪÊʺÏ×÷Òò×Ó·ÖÎö¡£
4.3.2Òò×Ó·ÖÎö
±í4-5 ×Ü·½²î½âÊÍ Comp
Initial Eigenvalues
onent
% of
Cumul
Total Varian
ative %
ce
1 3.803 20.016 20.016 2 2.054 10.809 30.825
Extraction Sums of Rotation Sums of Squared
Squared Loadings Loadings
% of % of
CumulCumul
Total VarianTotal Varian
ative % ative %
ce ce 3.803 2.054
12
20.016 20.016 2.242 10.809 30.825 2.220
11.798 11.798 11.683 23.481
3 4 5
1.564 1.431 1.259
8.231 7.532 6.625
39.056 1.564 46.587 1.431 53.213 1.259
8.231 7.532 6.625
39.056 1.973 46.587 1.958 53.213 1.718
10.385 33.866 10.306 44.172 9.040
53.213
Òò×Ó·ÖÎö¹ý³ÌÖУ¬²ÉÓÃÖ÷³É·Ö·ÖÎö·¨£¬²¢ÒÔÕý½»·¨½øÐÐÒò×ÓÐýת£¬³éÈ¡ÌØÕ÷Öµ´óÓÚ1µÄÒò×Ó¡£µ«ÓÉÓÚÒò×ÓÊýÄ¿½Ï¶à£¬ÎªÆß¸ö£¬¼ÌÐøÊ¹ÓÃÒò×Ó·ÖÎö·½·¨£¬¶ÔÏîÄ¿·ÖÎöʱ£¬Í¬ÑùʹÓÃÖ÷³É·Ö·ÖÎö·¨£¬²¢ÒÔÕý½»·¨½øÐÐÒò×ÓÐýת£¬Ö¸¶¨Òò×Ó¸öÊýΪÎå¸ö£¬µÃµ½µÄÎå¸öÒò×Ó¾ßÓнÏÇåÎúµÄ½á¹¹¡£ÕâÎå¸öÒò×Ó¶ÔÔ±¹¤ÂúÒâ¶ÈµÄ½âÊͳ̶ÈΪ53.213%£¬±íÃ÷ÿ¸öÏîÄ¿±»Îå¸öÒò×Ó½âÊ͵ķ½²î¶¼ÔÚÒ»°ëÒÔÉÏ¡£
ÓÉÐýתºóµÄÒò×Ó¾ØÕó±í£¬½«Îå¸öÒò×Ó·Ö±ðÃüÃûΪ£ºÒò×ÓÒ»¡°¹¤×÷»Ø±¨¡±£¨°üÀ¨¿¼ºË¿ÉÌá¸ß¹¤×÷ˮƽ¡¢¹¤×÷¿Éѧµ½ºÜ¶à֪ʶ¡¢µê³¤¹ÄÀø´´ÐÂÐÔÒâ¼û¡¢¹«Ë¾¹Ø×¢Ô±¹¤³É³¤¡¢ÃŵêºÏ×÷¶à´Î³É¹¦¡¢¶Ô¿¼ÇÚÖÆ¶ÈÂúÒ⣩£¬Òò×Ó¶þ¡°¹¤×÷»·¾³¡±£¨°üÀ¨ÏîĿн×ÊÓ븺ºÉÏà·û¡¢µê³¤ÈϿɹ¤×÷³É¹û¡¢¸ÚλҪÇóºÏÀí¡¢¿É³ÐÊܹ¤×÷Ç¿¶È¡¢¹¤×÷»·¾³°²È«£©£¬Òò×ÓÈý¡°¸öÈË·¢Õ¹¡±£¨°üÀ¨ÏîÄ¿Ã÷È··¢Õ¹µÀ·¡¢¹«Ë¾·¢Õ¹ÓÐǰ¾°¡¢ÔÚÂêÑŹ¤×÷Óгɾͣ©£¬Òò×ÓËÄ¡°¹¤×÷±¾Éí¡±£¨°üÀ¨ÏîÄ¿Ã÷È·¾¼ÍÈ˸ÚλְÔð¡¢Çå³þ¹«Ë¾ÒµÎñ·¶Î§¡¢¸£ÀûÖÆ¶È½ÏÍêÉÆ£©£¬Òò×ÓÎå¡°¶ÔÆóÒµµÄÈÏͬ¡±£¨ÈÏͬÂêÑÅ·þÎñÀíÄî¡¢¿É»ñÈ¡¹¤×÷ËùÐè×ÊÔ´£©¡£¸ù¾ÝÒò×ÓÔØºÉÕ󣨱í4-6£©ÓëÒò×ӵ÷ÖϵÊýÕ󣨱í4-7£©£¬¼ÆËã¸÷Òò×ӵ÷֣º
±í4-6 ·½²î×î´óÕý½»ÐýתºóµÄÒò×ÓÔØºÉÕó Component 1 2
.717 .025 ¿¼ºË¿ÉÌá¸ß¹¤×÷ˮƽ
.599 -.207 ¶Ô¿¼ÇÚÖÆ¶ÈÂúÒâ
.560 .304 ÃŵêºÏ×÷¶à´Î³É¹¦
.559 .073 ¹¤×÷¿ÉѧϰºÜ¶à֪ʶ
.532 .327 ¹«Ë¾¹Ø×¢Ô±¹¤³É³¤
.502 .282 µê³¤¹ÄÀø´´ÐÂÐÔÒâ¼û
-.011 .757 ¿É³ÐÊܹ¤×÷Ç¿¶È
.050 .635 ¹¤×÷»·¾³°²È«
.233 .526 ¸ÚλҪÇóºÏÀí
.187 .525 µê³¤ÈϿɹ¤×÷³É¹û
-.015 .500 н×Ê´ýÓöÓ븺ºÉÏà·û
-.086 -.060 ¹«Ë¾·¢Õ¹ÓÐǰ¾°
.236 .219 ÔÚÂêÑŹ¤×÷ÓгɾÍ
.029 -.029 Ã÷È··¢Õ¹µÀ·
.203 .032 ¸£ÀûÖÆ¶È½ÏÍêÉÆ
-.077 -.131 Ã÷È·¾¼ÍÈ˸ÚλְÔð
.038 .144 Çå³þ¹«Ë¾ÒµÎñ·¶Î§
.055 .115 ¿É»ñÈ¡¹¤×÷ËùÐè×ÊÔ´
-.023 .087 ÈÏͬÂêÑÅ·þÎñÀíÄî
±í4-7 Òò×ӵ÷ÖϵÊý¾ØÕó
Component
1 2
-.085 -.051 Ã÷È·¾¼ÍÈ˸ÚλְÔð
.062 .035 ¸£ÀûÖÆ¶È½ÏÍêÉÆ
-.059 .066 Çå³þ¹«Ë¾ÒµÎñ·¶Î§
-.081 -.060 ¹«Ë¾·¢Õ¹ÓÐǰ¾°
-.106 -.036 ÈÏͬÂêÑÅ·þÎñÀíÄî
13
3
.305 -.231 .398 -.013 -.037 .033 .050 -.245 .062 .319 .248 .714 .653 .598 .095 -.022 .169 -.077 .312 4 .023 .043 .144 .068 -.209 .260 .120 -.187 .220 .163 -.360 .210 .277 -.217 .718 .687 .553 -.152 .284 5 .019 .070 -.175 .456 -.141 .317 .113 -.157 .315 .265 .128 -.206 .110 .255 -.265 .151 .087 .762 .574
3 -.101 -.051 .000 .413 .113 4 .390 .385 .289 .026 .107 5 .102 -.210 .017 -.155 .341
¹²·ÖÏí92ƪÏà¹ØÎĵµ