当前位置:首页 > 2019年山东省菏泽市中考数学试卷
进的科普书与用8000元购进的文学书本数相等.今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?
考点:分式方程的应用;一元一次不等式的应用。 解答:解:设文学书的单价是x元/本. 依题意得:12000?8000
x?4x解得:x?8,经检验x?8是方程的解,并且符合题意. ?x?4?12
所以,去年购进的文学书和科普书的单价分别是8元和12元.
②设购进文学书550本后至多还能购进y本科普书. 依题意得550?8?12y?10000,解得y?4662,
3由题意取最大整数解,y?466..
所以,至多还能够进466本科普书. 18.(2018菏泽)如图,在边长为1的小正方形组成的格中,△ABC和△DEF的顶点都在格点上,P1,P2,P3,P4,P5是△DEF边上的5个格点,请按要求完成下列各题: (1)试证明三角形△ABC为直角三角形;
(2)判断△ABC和△DEF是否相似,并说明理由;
(3)画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与△ABC相似(要求:用尺规作图,保留痕迹,不写作法与证明).
考点:作图—相似变换;勾股定理的逆定理;相似三角形的判定。
解答:解:(1)根据勾股定理,得AB=2,AC=,BC=5;
222
显然有AB+AC=BC,
根据勾股定理的逆定理得△ABC 为直角三角形; (2)△ABC和△DEF相似.
根据勾股定理,得AB=2,AC=,BC=5, DE=4,DF=2,EF=2. ===,
∴△ABC∽△DEF.
(3)如图:连接P2P5,P2P4,P4P5, ∵P2P5=,P2P4=,P4P5=2, AB=2,AC=,BC=5, ∴
=
=
=
,
∴,△ABC∽△P2P4 P5.
19.(2018菏泽)某中学举行数学知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图.根据图中所给出的信息解答下列问题:
(1)二等奖所占的比例是多少?
(2)这次数学知识竞赛获得二等奖的人数是多少? (3)请将条形统计图补充完整;
(4)若给所有参赛学生每人发一张卡片,各自写上自己的名字,然后把卡片放入一个不透明的袋子里,摇匀后任意摸出一张,求摸出的卡片上是写有一等奖学生名字的概率. 考点:条形统计图;扇形统计图;概率公式。 解答:解:(1)由1﹣10%﹣24%﹣46%=20%,所以二等奖所占的比例为20%
(2)参赛的总人数为:20÷10%=200人,
这次数学知识竞赛获得二等奖的人数是:200×20%=40人; (3)
(4)摸出的卡片上是写有一等奖学生名字的概率为:20÷200=1.
1020.(2018菏泽)牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元/件) … 20 30 40 50 60 … 每天销售量(y件) … 500 400 300 200 100 … (1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)
(3)菏泽市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
考点:二次函数的应用;一次函数的应用。 解答:解:(1)画图如图:
由图可猜想y与x是一次函数关系, 设这个一次函数为y?kx?b(k?0),
∵这个一次函数的图象经过(20,500)、(30,400)这两点,
500?20k?b?∴??,解得???400?30k?bk??10, ?b?700∴函数关系式是y??10x?700.
(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得:
W?(x?10)(?10x?700)??10x?800x?7000??10(x?40)+9000, ?当x?40时,W有最大值9000.-
(3)对于函数W??10(x?40)2+9000,当x?35时,W的值随着x值的增大而增大,
?销售单价定为35元∕件时,工艺厂试销该工艺品每天获得的利润最大.
22
21.(2018菏泽)如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.
(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;
共分享92篇相关文档