云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 数独九宫格各种链的关系

数独九宫格各种链的关系

  • 62 次阅读
  • 3 次下载
  • 2025/6/2 17:24:26

第一种情况:A==B--C==D

由A的真假情况可以做出以下BCD关系的枚举。 再次请大家注意本文开头所提到的强弱关系本质

1.强关系是说A与B两个事件,假如A不成立,则B一定成立。 2.弱关系是说A与B两个事件,假如A成立,则B一定不成立。

XY-Wing了,下面是一个XY-Wing的例子:

?通常解释XY-Wing原理的时候会用如果r4c2=1则r5c1=4;如果r4c2=9则r4c8=4,所以不论r4c2是1还是9,r5c1与r4c8中至少有一个是4,

从而得到r5c1与r4c8的等位群格位交集部分(图中蓝色格)不含4。

?这样是不是有点猜测的味道呢?很多人都说高级技巧是把猜的东西合理化,其实不然。 ?

r5c1(4)==r5c1(1)--r4c2(1)==r4c2(9)--r4c8(9)==r4c8(4), 也是得到r5c1与r4c8中至少有一个是4。

?与XY-Wing较相近的要数XY-Chain。

?XY-Wing由三格组成,分别为xy格,xz格,yz格。XY-Chain不止三格,需要把一些格合并当作XY-Wing组成格之一来看。

?单数链以强、弱方式构成环,称为 X-Cycle,无法构成环,则称为 X-Chain。 ?X-Cycle 的弱环节除节点外,单元内其它格位的相同候选数均可删除。 ?X-Chain 在开口处之两节点共同作用格的相同候选数均可删除。 本质上 X-Cycle 只是 X-Chain 的特例,因此统称为单链。

?单链若由两条强链与一条弱链构成,就是习称的双强链,有摩天楼、双线风筝、鱼三种连结方式。 ?单链若由两条强链与两条弱链构成环,就是习称的 X-Wing。

1

XY-Wing的结构可以分为两种: 1. xy格与xz格 或者 xy格与yz格 同宫。

2. xy格、xz格、yz格在三个不同宫。

2

3

XY-Chian首尾若能连接起来就成为了XY-Cycle(Multi X-Wing)

r4c1(7)==r5c4(7)--r5c2(7)=={r1c2, r2c2}(7) 断开任意一条弱链(绿色表示)即成为XY-Chain的结构。 得到{r1c2, r2c2}与r4c1至少有一个为7。 例如断开上端r8c57的弱链后,可以得到r8c5(7)与r8c7(7) 所以可以删除{r1c2, r2c2}与r4c1等位群格位的交 至少有一个成立,即可删除这两格等位群格位交集的7, 集r1c3的候选数7。 其他三种断开弱链能够做何删减,大家可以自己尝试推导。

Guardians(守护者)的技巧,也有地方称之为Broken Wings或者Turbot-Fish。

其描述的是某一个候选数X的情况,当有偶数条强链,且两个端点处于同一unit时,这时可以删除两个端点上的候选数X,

如果该unit出这两端点格外只有一格含有候选数X,则该格一定就是X。 下图:

从蓝色格出发到达红色格,根据它们之间的逻辑关系,可以得到红色格有相同的真假值。

?红色格若为假,没问题两个都可删除,红色格若为真,则违反数独原则也应当删除。 ?结论:红色格应予删除

4

搜索更多关于: 数独九宫格各种链的关系 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

第一种情况:A==B--C==D 由A的真假情况可以做出以下BCD关系的枚举。 再次请大家注意本文开头所提到的强弱关系本质 1.强关系是说A与B两个事件,假如A不成立,则B一定成立。 2.弱关系是说A与B两个事件,假如A成立,则B一定不成立。 XY-Wing了,下面是一个XY-Wing的例子: ?通常解释XY-Wing原理的时候会用如果r4c2=1则r5c1=4;如果r4c2=9则r4c8=4,所以不论r4c2是1还是9,r5c1与r4c8中至少有一个是4, 从而得到r5c1与r4c8的等位群格位交集部分(图中蓝色格)不含4。 ?这样是不是有点猜测的味道呢?很多人都说高级技巧是把猜的东西合理化,其实不然。 ?用强弱强

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com