当前位置:首页 > 电动汽车的一个可逆热泵系统除霜过程的参数分析
图
显示了上述所提到3个阀门开度的冷却过程对比结果。明显,开度为85%的阀,在除霜过程中,冷却剂在外部热交换器的出口已经被冷却。由于较低的质量流量,这将降低了除霜性能。在热交换器表面上的一个可视的仿真霜厚度在图
体现。
在85%的“Kvopt”到“Kvopt”之间,每隔30秒,依次从左到右排列。然而“Kvopt”值的阀门开度对应均匀快速的除霜过程,过小的阀门开度由于冷却剂的冷却导致除霜过程耗时多,这引起不均匀的除霜过程。
4、结论
9
测量结果外部热交换器在选定操作条件下的除霜比逆循环除霜耗时少2分钟。在除霜过程中,压缩机的压力值达到37 bar 后会略有涨幅。在压缩机启动后,吸管的压力值总是保持着21 bar 。在压缩机启动2分30秒后,外部热交换器的冷却剂进口温度大约达到50℃.启动后,压缩机的功率保持在270W,速度保持在1500r/min,平均冷却剂流量21Kg/h.
含有一个热交换器的制冷剂循环的模型,模拟压缩机的工作功率Wdefrost与测量结果相比较显示的相对误差为1.6%。因此,根据这些仿真结果,不同节流阀参数分析似乎是合理的,原因在于该模型的可预测性。仿真结果表明,存在一个最佳的Kvalue 值使得除霜的运行时间和效率处于最佳。大的节流阀开度使得除霜时间增加和效率低。但是过小的Kvalue 值会更加加剧时间的增加,效率降低。这是由于较低的冷却剂质量流量所引起的结果,这将会引起冷却剂在交换器的最后阶段冷却。从而导致了不平衡的除霜过程。
对逆循环除霜过程的研究,表明在亚临界系统条件下使用二氧化碳作为工作流体(恒温冷凝),得到的结果也可能被转移到其他的除霜制冷剂中,如逆循环除霜过程与R134a,除霜热量很大一部分来自于过冷制冷剂冷凝,也可能导致不均匀的低效率的除霜过程。因此,优化膨胀阀开度(大小)的类似建议值得采纳。
5、参考文献:[1] J. Dong, S. Deng, Y. Jiang, L. Xia, Y. Yao, An experimental
study on defrosting
heat supplies and energy consumptions during a reverse cycle defrost operation
for an air source heat pump, Applied Thermal Engineering 37 (2012) 380e387.
[2] Y. Ding, G. Ma, Q. Chai, Y. Jiang, Experiment investigation of reverse cycle defrosting methods on air source heat pump with TXV as the throttle regulator, International Journal of Refrigeration 27 (2004) 671e678.
[3] D. Huang, X. Yuan, X. Zhang, Effects of fan-starting methods on the reversecycle
defrost performance of an air-to-water heat pump, International Journal of Refrigeration 27 (2004) 869e875.
[4] H. Wenju, J. Yiqiang, Q. Minglu, N. Long, Y. Yang, D. Shiming, An experimental
study on the operating performance of a novel reverse-cycle hot gas
10
defrosting method for air source heat pumps, Applied Thermal Engineering 31 (2011) 363e369.
[5] A. Steiner, R. Rieberer, Investigation of a reversible cooling and heating system
for electric vehicles using CO2 as working fluid under frosting conditions, in: 10th IIR Gustav Lorentzen Conference Proceedings, Delft, Netherlands, 2012, pp. 889e896.
[6] S. Padhmanabhan, D. Fisher, L. Cremaschi, E. Moallem, Modeling non-uniform
frost growth on a fin-and-tube heat exchanger, International Journal of Refrigeration 34 (2011) 2018e2030.
[7] A.B. Modelon, AirConditioning Library (Version 1.8) e Users Guide, 2010. Lund, Sweden.
[8] S. Haaf, Heat Transfer in Air Coolers, in: Handbook of Refrigeration, vol. 6, Springer, Berlin, Germany, 1988. Chapter Heat Exchangers, (in German). [9] Y.-J. Chang, C.-C. Wang, A generalized heat transfer correlation for louver fin geometry, International Journal of Heat and Mass Transfer 40 (1997) 533e544.
[10] S. Kandlikar, A general correlation for saturated two-phase flow boiling heat
transfer inside horizontal and vertical tubes, ASME Journal of Heat Transfer (1990).
[11] DIN EN 60534-2-1Control Valves for Process Control e Part 2-1: Flow Capacity
e Equations for Fluids Under Mounted Conditions, CENELEC European Committee
for Elektrotechnical Standardization, Brussel, Belgium, 2000 (in German).
[12] R. Span, W. Wagner, Equations of state for technical applications, International
Journal of Thermophysics 24 (2003).
[13] K. Proelss, G. Schmitz, Modeling of frost growth onn: Proceedings of the 5th Modelica Conference, Vienna, Austria, 2006, pp.509e516.
[14] F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, fourth
ed., John Wiley and Sons Inc., New York, USA, 1996.
[15] Y. Hayashi, A. Aoki, S. Adachi, K. Hori, Study of frost properties correlating
with frost formation types, Journal of Heat Transfer 99 (1977) 239e245. [16] J. Yonko, C. Sepsy, An investigation of the thermal conductivity of frost while
forming on a flat horizontal plate plate, ASHRAE Transactions 73 (1967). [17] A. Pearson, Defrost options for carbon dioxide systems, in: International
11
Institute of Ammonia Refrigeration e 2006 Ammonia Refrigeration Conference & Exhibition, Reno, Nevada, 2006. Technical report.
12
共分享92篇相关文档