云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > (完整版)陕西省2018年中考数学试题及解析(word精编版)

(完整版)陕西省2018年中考数学试题及解析(word精编版)

  • 62 次阅读
  • 3 次下载
  • 2025/6/16 22:54:34

当x=600时,y有最小值,最小值为23200元.

答:这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润23200元

【点评】本题考查一次函数的应用、一元一次方程的应用等知识,解题的关键是理解题意,正确寻找等量关系解决问题;

22.(7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止). (1)转动转盘一次,求转出的数字是﹣2的概率;

(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.

【分析】(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2的有2种结果,根据概率公式计算可得; (2)列表得出所有等可能结果,从中找到乘积为正数的结果数,再利用概率公式求解可得.

【解答】解:(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2的有2种结果, 所以转出的数字是﹣2的概率为=;

(2)列表如下:

﹣2 ﹣2 1

4 4

1 3 3

﹣2 4 ﹣2 4

﹣2 ﹣2 ﹣6 ﹣6 ﹣2 ﹣2 ﹣6 ﹣6

1 1 3 3

﹣2 ﹣2 1 ﹣2 ﹣2 1 ﹣6 ﹣6 3 ﹣6 ﹣6 3

1 1 3 3

3 3 9 9

3 3 9 9

由表可知共有36种等可能结果,其中数字之积为正数的有20种结果, 所以这两次分别转出的数字之积为正数的概率为

=.

【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

23.(8分)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.

(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB; (2)连接MD,求证:MD=NB.

【分析】(1)连接ON,如图,根据斜边上的中线等于斜边的一半得到CD=AD=DB,则∠1=∠B,再证明∠2=∠3得到ON∥DB,接着根据切线的性质得到ON⊥NE,然后利用平行线的性质得到结论;

(2)连接DN,如图,根据圆周角定理得到∠CMD=∠CND=90°,则可判断四边形CMDN为矩形,所以DM=CN,然后证明CN=BN,从而得到MD=NB. 【解答】证明:(1)连接ON,如图, ∵CD为斜边AB上的中线, ∴CD=AD=DB, ∴∠1=∠B, ∵OC=ON,

∴∠1=∠2, ∴∠2=∠3, ∴ON∥DB, ∵NE为切线, ∴ON⊥NE, ∴NE⊥AB;

(2)连接DN,如图, ∵AD为直径,

∴∠CMD=∠CND=90°, 而∠MCB=90°, ∴四边形CMDN为矩形, ∴DM=CN,

∵DN⊥BC,∠1=∠B, ∴CN=BN, ∴MD=NB.

【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和直角三角形斜边上的中线.

24.(10分)已知抛物线L:y=x+x﹣6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.

(1)求A、B、C三点的坐标,并求△ABC的面积;

(2)将抛物线L向左或向右平移,得到抛物线L′,且L′与x轴相交于A'、B′两点(点A′在点B′的左侧),并与y轴相交于点C′,要使△A'B′C′和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.

2

【分析】(1)解方程x2+x﹣6=0得A点和B点坐标,计算自变量为0的函数值得到C点坐标,然后利用三角形面积公式计算△ABC的面积;

(2)利用抛物线平移得到A′B′=AB=5,再利用△A'B′C′和△ABC的面积相等得到C′(0,﹣6),则设抛物线L′的解析式为y=x2+bx﹣6,所以m+n=﹣b,mn=﹣6,然后利用|n﹣m|=5得到b2﹣4×(﹣6)=25,于是解出b得到抛物线L′的解析式.

【解答】解:(1)当y=0时,x2+x﹣6=0,解得x1=﹣3,x2=2, ∴A(﹣3,0),B(2,0), 当x=0时,y=x2+x﹣6=﹣6, ∴C(0,﹣6),

∴△ABC的面积=?AB?OC=×(2+3)×6=15; (2)∵抛物线L向左或向右平移,得到抛物线L′, ∴A′B′=AB=5,

∵△A'B′C′和△ABC的面积相等, ∴OC′=OC=6,即C′(0,﹣6), 设抛物线L′的解析式为y=x+bx﹣6,

设A'(m,0)、B′(n,0),则m、n为方程x2+bx﹣6=0的两根, ∴m+n=﹣b,mn=﹣6, ∵|n﹣m|=5, ∴(n﹣m)2=25, ∴(m+n)2﹣4mn=25,

∴b2﹣4×(﹣6)=25,解得b=7或﹣7,

∴抛物线L′的解析式为y=x2+7x﹣6或y=x2﹣7x﹣6.

【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象与几何变换.

25.(12分)问题提出

(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值

2

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

当x=600时,y有最小值,最小值为23200元. 答:这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润23200元 【点评】本题考查一次函数的应用、一元一次方程的应用等知识,解题的关键是理解题意,正确寻找等量关系解决问题; 22.(7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止). (1)转动转盘一次,求转出的数字是﹣2的概率; (2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com