当前位置:首页 > 2014年中考压轴题-湖南
2014年中考数学压轴题精编—湖南篇
2014年中考数学压轴题精编—湖南篇
1.(湖南省长沙市)已知:二次函数y=ax+bx-2的图象经过点(1,0),一次函数的图象经过原点和点(1,-b),其中a>b>0且a、b为实数. (1)求一次函数表达式(用含b的式子表示); (2)试说明:这两个函数的图象交于不同的两点;
(3)设(2)中的两个交点的横坐标分别为x1、x2,求|x1-x2|的范围.
2
1
2014年中考数学压轴题精编—湖南篇
2.(湖南省长沙市)如图,平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=82cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒2cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动.设运动时间为t秒. (1)用t的式子表示△OPQ的面积S;
(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;
12
(3)当△OPQ与△PAB和△QPB相似时,抛物线y=x+bx+c经过
4B、P两点,过线段BP上一动点M作y轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面
y C B Q 积之比.
O P A x 2
2014年中考数学压轴题精编—湖南篇
3.(湖南省岳阳市)如图①、②,在平面直角坐标系中,一边长为2的等边三角板CDE恰好与坐标系中的△OAB重合,现将三角板CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°到△C′ED的位置.
(1)求C′ 点的坐标;
(2)求经过O、A、C′ 三点的抛物线的解析式;
(3)如图③,⊙G是以AB为直径的圆,过B点作⊙G的切线与x轴相交于点F,求切线BF的解析式; (4)抛物线上是否存在一点M,使得S△AMF :S△OAB=16 :3?若存在,请求出点M的坐标;若不存在,请
说明理由. y
B (E) G O (C) A (D) x
图①
y B (D) C′ G O (C) A (E) x 图②
y B (D) C′ G F O (C) A (E) x 图③ 3
2014年中考数学压轴题精编—湖南篇
4.(湖南省衡阳市)已知:等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒. (1)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;
(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围.
C Q
P
A M N B
4
共分享92篇相关文档