当前位置:首页 > 百分数与配比问题
2010秋季 初一
1.17-1= 0.17=17%.
答:这批笔记本商店实际获得利润是 17%.
例3 有一种商品,甲店进货价(成本)比乙店进货价便宜 10%.甲店按 20%的利润来定价,乙店按 15%的利润来定价,甲店的定价比乙店的定价便宜 11.2元.问甲店的进货价是多少元?
解:设乙店的进货价是“1”,甲店的进货价就是0.9.
乙店的定价是 1×(1+ 15%),甲店的定价就是 0.9×(1+20%). 因此乙店的进货价是
11.2÷(1.15- 0.9×1.2)=160(元).
甲店的进货价是
160× 0.9= 144(元).
答:甲店的进货价是144元.
设乙店进货价是1,比设甲店进货价是1,计算要方便些.
例4 开明出版社出版的某种书,今年每册书的成本比去年增加 10%,但是仍保持原售价,因此每本利润下降了40%,那么今年这种书的成本在售价中所占的百分数是多少? 解:设去年的利润是“1”.
利润下降了40%,转变成去年成本的 10%,因此去年成本是 40%÷10%= 4.
用我们全部的爱换取孩子的一点点改变!
21
学习热线:26400350
2010秋季 初一
在售价中,去年成本占
因此今年占 80%×(1+10%)= 88%. 答:今年书的成本在售价中占88%.
因为是利润的变化,所以设去年利润是1,便于衡量,使计算较简捷. 例5 一批商品,按期望获得 50%的利润来定价.结果只销掉 70%的商品.为尽早销掉剩下的商品,商店决定按定价打折扣销售.这样所获得的全部利润,是原来的期望利润的82%,问:打了多少折扣? 解:设商品的成本是“1”.原来希望获得利润0.5. 现在出售 70%商品已获得利润
0.5×70%= 0.35.
剩下的 30%商品将要获得利润
0.5×82%-0.35=0.06.
因此这剩下30%商品的售价是
1×30%+ 0.06= 0.36.
原来定价是 1×30%×(1+50%)=0.45. 因此所打的折扣百分数是
用我们全部的爱换取孩子的一点点改变!
22
学习热线:26400350
2010秋季 初一
0.36÷0.45=80%.
答:剩下商品打8折出售.
从例1至例5,解题开始都设“1”,这是基本技巧.设什么是“1”,很有讲究.希望读者从中能有所体会.
例6 某商品按定价出售,每个可以获得45元钱的利润.现在按定价打85折出售8个,所能获得的利润,与按定价每个减价35元出售12个所能获得的利润一样.问这一商品每个定价是多少元?
解:按定价每个可以获得利润45元,现每个减价35元出售12个,共可获得利润
(45-35)×12=120(元).
出售8个也能获得同样利润,每个要获得利润
120÷8=15(元).
不打折扣每个可以获得利润45元,打85折每个可以获得利润15元,因此每个商品的定价是
(45-15)÷(1-85%)=200(元).
答:每个商品的定价是200元.
例7 张先生向商店订购某一商品,共订购60件,每件定价100元. 张先生对商店经理说:“如果你肯减价,每件商品每减价1元,我就多订购3件.”商店经理算了一下,如果差价 4%,由于张先生多订购,仍可获得原来一样多的总利润.问这种商品的成本是多少?
用我们全部的爱换取孩子的一点点改变!
23
学习热线:26400350
2010秋季 初一
解:减价4%,按照定价来说,每件商品售价下降了100×4%=4(元).因此张先生要多订购 4×3=12(件). 由于60件每件减价 4元,就少获得利润
4×60= 240(元).
这要由多订购的12件所获得的利润来弥补,因此多订购的12件,每件要获得利润
240÷12=20(元).
这种商品每件成本是
100-4-20=76 (元).
答:这种商品每件成本76元.
二、各种各样的问题
百分数有着十分广泛的应用.这一节我们列举出有关百分数的各种各样的问题.
例8 小明训练 3000米赛跑,如果速度提高 5%,那么时间缩短百分之几?(百分数保留一位小数.) 解:设原来的速度是“1”. 时间缩短的百分数是
用我们全部的爱换取孩子的一点点改变!
24
学习热线:26400350
共分享92篇相关文档