ÔÆÌ⺣ - רҵÎÄÕ·¶ÀýÎĵµ×ÊÁÏ·ÖÏíÆ½Ì¨

µ±Ç°Î»ÖãºÊ×Ò³ > µÚÒ» ¶þÕÂ×÷ÒµÌ⣨²Î¿¼´ð°¸£©

µÚÒ» ¶þÕÂ×÷ÒµÌ⣨²Î¿¼´ð°¸£©

  • 62 ´ÎÔĶÁ
  • 3 ´ÎÏÂÔØ
  • 2025/12/9 15:26:13

2.4 What are the octal values of the four 8-bit bytes in the 32-bit number with octal representation 341250167328?

34125016732 8 = 11 100 001 010 101 000 001 110 111 011 010 2

1st Byte = 11100001 2 = 341 8 2nd Byte = 01010100 2 = 124 8 3rd Byte = 00011101 2 = 35 8 4th Byte = 11011010 2 = 332 8

2.5 Convert the following numbers into decimal: (1) 10100.11012=?10 (2) 15C.3816=?10

10100.1101 2 = 20.8125 10 15C.38 16 = 348.21875 10

2.6 Perform the following number system conversions: (1) 2385110=?16 (2) 125.1710=?2

23851 10 = 5D2B 16 125.17 10 = 1111101.0010110 2£¨Ó¦±£Áô7λ¶þ½øÖÆÐ¡Êý£©

2.7 Add the following pairs of binary numbers, showing all carries:

110101 ?11010

Carry:1100000

110101

?11010Sum: 1001111

2.8 Repeat Drill 2.7 using subtraction instead of addition, and showing borrows instead of carries. 110101

?11010

Borrow: 110100

110101

?11010Diff: 011011

2.9 Add the following pairs of octal numbers: 57734

?1066

Carry: 11110

57734

?1066Sum: 61022

2.10 Add the following pairs of hexadecimal numbers: F35B

?27E6

Carry: 11110

F35B

?27E6Sum: 11B41

2.11 Write the 8-bit signed-magnitude, two¡¯s-complement, and ones¡¯-complement representations for each of these decimal numbers: ?25, ?42.

Decimal:

?25

?42

Signed-magnitude: 00011001 10101010 Two¡¯s-complement: 00011001 11010110 Ones¡¯-complement: 00011001 11010101

2.12 Indicate whether or not overflow occurs when adding the following 8-bit two¡¯s-complement numbers:

1011111101011101(1) (2)

?11011111?00110001 10011110

2.13 Each of the following arithmetic operations is correct in at least one number system. Determine possible

radices of the numbers in each operation.

(1) 41/3=13 (2) 23+44+14+32=223

(1) r = 8 (2) r = 5

2.14 The first expedition to Mars found only the ruins of a civilization. From the artifacts and pictures, the explorers deduced that the creatures who produced this civilization were four-legged beings with a tentacle that branched out at the end with a number of grasping ¡°fingers¡±. After much study, the explorers were able to translate Martian mathematics. They found the following equation:

5x2?50x?125?0

10001110

Not overflow Overflow

with the indicated solutions x = 5 and x = 8. The value x = 5 seemed legitimate enough, but x = 8 required some explanation. Then the explorers reflected on the way in which Earth¡¯s number system developed, and found evidence that the Martian system had a similar history. How many fingers would you say the Martians had ? (From The Bent of Tau Beta Pi, February, 1956)

¡¾×¢¡¿´ËÌâ½â·¨ÓжàÖÖ£¬ÒÔÏ·½·¨ÎÞÐèÇó½âÒ»Ôª¶þ´Î·½³Ì¡£

¼ÙÉè»ðÐÇÈ˵ÄÊÖÖ¸¸öÊýΪ r£¬¼´Ê¹Óà r ½øÖÆ¡£ Ô­r½øÖƵķ½³ÌΪ

?5x2?50x?125?0?r ¡ú ?5x250x125???0555?r

r½øÖÆ·½³ÌתΪʮ½øÖƱíʾΪ£º

?5r1?0r2?2r?5x?x??0552r2?2r?5?10 ¡ú ?x?rx??052?10

ÓÉÌâÄ¿ÒÑÖªµÄr½øÖÆ·½³ÌµÄÁ½¸ö½â¿ÉµÃ£¬r½øÖÆ·½³ÌתΪʮ½øÖƱíʾΪ£º¡à

?(x?5)(x?8)?0?r ¡ú ?x2?(5?8)x?5?8?0?r

132?2?13?55?x2?13x?40?0?10

r2?2r?55r?(5?8)r?1310 ´úÈë

??10???10?4010

Âú×ã·½³Ì

?x2?13x?40?0?10

2.15 Your pointy-haired boss says every code word has to contain at least one ¡°zero¡±, because it ¡°saves power¡±. So how many different 3-bit binary state encodings are possible for the traffic-light controller of Table X2-1?

Table X2-1 States in a traffic-light controller

N-S Green ON Off Off Off Off Off N-S Yellow Off ON Off Off Off Off Lights N-S E-W Red Green Off Off Off ON ON ON ON Off Off ON Off Off E-W Yellow Off Off Off Off ON Off E-W Red ON ON ON Off Off ON Code Word 000 001 010 100 101 110 State N-S go N-S wait N-S delay E-W go E-W wait E-W delay

ÓÉÓÚͺͷÀϰåΪÁËÊ¡µç£¬ÒªÇóÂë×ÖÖÁÉÙ°üº¬Ò»¸ö0£¬Òò´Ë£¬ÔÚ3λ¶þ½øÖƱàÂëÖпÉÓõÄÂë×ÖΪ7¸ö£¨000 ~ 110£©£¬¶ø½»Í¨µÆ¿ØÖÆ×´Ì¬ÓÐ6¸ö£¬¼´´Ó7¸öÂë×ÖÖÐÑ¡Ôñ6¸ö½øÐбàÂ룬¹²ÓÐ 7¡Á6¡Á5¡Á4¡Á3¡Á2 = 5040 ÖÖ±àÂë·½°¸¡£

2.16 List all of the ¡°bad¡± boundaries in the mechanical encoding disk of Figure X2-1,where an incorrect position may be sensed.

111000001001101100011010110

Figure X2-1 A mechanical encoding disk using a 3-bit binary code

µ±ÏàÁÚÁ½¸öÂë×ÖÖÐÓÐ1¸öÒÔÉϵÄλÊý·¢Éú±ä»¯£¬ÔòÆä±ß½ç¾ÍÊÇ¡°»µ¡±±ß½ç¡£

ËùÓлµ±ß½çÊÇ£º 001 ~ 010±ß½ç¡¢ 011 ~ 100±ß½ç¡¢ 101 ~ 110±ß½ç¡¢ 111 ~ 000±ß½ç ¡£

2.17 On-board altitude transponders on commercial and private aircraft use Gray code to encode the altitude readings that are transmitted to air traffic controllers. Why?

Ê×ÏÈ£¬º£°Î¸ß¶ÈÊÇÁ¬Ðø±ä»¯µÄ¡£Æä´Î£¬¸ñÀ×ÂëµÄÏàÁÚÂë×ÖÖ»ÓÐһλ·¢Éú±ä»¯£¬ÔÚÁ½¸öÏàÁÚÂë×ֵı߽紦²»»á·¢Éú´íÎóÐÔµÄÍ»±ä£¬Ò²¾Í±£Ö¤ÁËÔÚº£°Î¸ß¶ÈµÄÁ¬Ðø±ä»¯ÖÐÆäÊýÖµ²»»á·¢Éú´íÎóÐÔµÄÍ»±ä¡£

2.18 An incandescent light bulb is stressed every time it is turned on, so in some applications the lifetime of the bulb is limited by the number of on/off cycles rather than the total time it is illuminated. Use your knowledge of codes to suggest a way to double the lifetime of 3-way bulbs in such applications.

¡¾×¢¡¿Ëùν3-wayµÆÅÝ£¬¼´ÓС°µÍ-ÖÐ-¸ß¡±ÈýÖÖÁÁ¶ÈµµÎ»£¬ÄÚ²¿ÓÐÁ½¸ùµÆË¿£¬Èç 50-100-150W 3-way bulb£¬ÄÚ²¿ÓÐ50WºÍ100WÁ½¸ùµÆË¿£¬¿É·Ö±ðʵÏÖ50W¡¢100W¡¢150WÈýÖÖ¹¦ÂÊ¡£

ÓÉÓÚµÆÅݵµÎ»Í»±ä»áËõ¶ÌʹÓÃÊÙÃü£¬Îª´Ë£¬Ó¦²ÉÓøñÀ×ÂëÀ´¶ÔÆäµµÎ»¿ª¹Ø½øÐбàÂ룬ÈçÏ£º

±àÂë 00 01 11 10

Options

2.19 Suppose a 4n-bit number B is represented by an n-digit hexadecimal number H. Prove that the two¡¯s complement of B is represented by the 16¡¯s complement of H. Make and prove true a similar statement for octal representation.

The modul of 4n-bit number B is (24n )10. The modul of n-digit hexadecimal number H is (16n )10 = (24n )10. So, they have a same modul M.

¡ßB = H ¡à B 2¡¯s = M -B = M ¨CH = H 16¡¯s

For octal, suppose a 3n-bit number B is represented by an n-digit octal number O.

The modul of 3n-bit number B is (23n )10 . The modul of n-digit octal number O is (8n )10 = (23n )10 . So, they have a same modul M as well. ¡ßB = O ¡à B 2¡¯s = M -B = M -O= O 8¡¯s

2.20 Prove that a two¡¯s-complement number can be multiplied by 2 by shifting it one bit position to the left, with a carry of 0 into the least significant bit position and disregarding any carry out of the most significant bit position, assuming no overflow. State the rule for detecting overflow.

ÉèB2¡¯S = bn-1 bn-2 ¡­b1 b0 Ôò B2¡¯S¡Á2 = B2¡¯S + B2¡¯S

= bn-1 bn-2 ¡­b1 b0 + bn-1 bn-2 ¡­b1 b0

µµÎ» OFF L (50W) M (100W) H (50W+100W)

Sn-1 Sn-2 ¡­S1 S0

ÈôbiΪ0£¬Ôò ÈôbiΪ1£¬Ôò 0 + 0

+

1 1

0 1 0

ÈçÉÏ£¬¿ÉÒÔ¼ÙÉè0Ϊ¡°¿Õλ¡±£¬µ±biΪ1ʱ£¬Ï൱Óڸá°1¡±×óÒÆÒ»Î»£¬²¢ÔÚÔ­´¦ÁôÏ¡°¿Õλ¡±¡£ Òò´Ë£¬B2¡¯S¡Á2£¬Ï൱ÓÚËùÓеÄ1×óÒÆÒ»Î»£¬¡°¿Õλ¡±0Ò²ËæÖ®×óÒÆÒ»Î»£¬ÇÒ×îµÍλÁôÏÂÁËеġ°¿Õλ¡±¡£

¼ì²âÒç³öµÄÔ­ÔòÊÇ£ºÈç¹û·ûºÅλ·¢Éú¸Ä±ä£¬Ôò¿ÉÒÔÈÏΪ·¢ÉúÁËÒç³ö¡£

ËÑË÷¸ü¶à¹ØÓÚ£º µÚÒ» ¶þÕÂ×÷ÒµÌ⣨²Î¿¼´ð°¸£© µÄÎĵµ
  • ÊÕ²Ø
  • Î¥¹æ¾Ù±¨
  • °æÈ¨ÈÏÁì
ÏÂÔØÎĵµ10.00 Ôª ¼ÓÈëVIPÃâ·ÑÏÂÔØ
ÍÆ¼öÏÂÔØ
±¾ÎÄ×÷Õߣº...

¹²·ÖÏí92ƪÏà¹ØÎĵµ

Îĵµ¼ò½é£º

2.4 What are the octal values of the four 8-bit bytes in the 32-bit number with octal representation 341250167328? 34125016732 8 = 11 100 001 010 101 000 001 110 111 011 010 2 1st Byte = 11100001 2 = 341 8 2nd Byte = 01010100 2 = 124 8 3rd Byte = 00011101 2 = 35 8 4th Byte = 11011010 2 = 332 8 2.5 Convert the following numbers into decimal: (1) 10100.11012=?10 (

¡Á ÓοͿì½ÝÏÂÔØÍ¨µÀ£¨ÏÂÔØºó¿ÉÒÔ×ÔÓɸ´ÖƺÍÅŰ棩
µ¥Æª¸¶·ÑÏÂÔØ
ÏÞÊ±ÌØ¼Û£º10 Ôª/·Ý Ô­¼Û:20Ôª
VIP°üÔÂÏÂÔØ
ÌØ¼Û£º29 Ôª/Ô ԭ¼Û:99Ôª
µÍÖÁ 0.3 Ôª/·Ý ÿÔÂÏÂÔØ150·Ý
ȫվÄÚÈÝÃâ·Ñ×ÔÓɸ´ÖÆ
VIP°üÔÂÏÂÔØ
ÌØ¼Û£º29 Ôª/Ô ԭ¼Û:99Ôª
µÍÖÁ 0.3 Ôª/·Ý ÿÔÂÏÂÔØ150·Ý
ȫվÄÚÈÝÃâ·Ñ×ÔÓɸ´ÖÆ
×¢£ºÏÂÔØÎĵµÓпÉÄÜ¡°Ö»ÓÐĿ¼»òÕßÄÚÈݲ»È«¡±µÈÇé¿ö£¬ÇëÏÂÔØÖ®Ç°×¢Òâ±æ±ð£¬Èç¹ûÄúÒѸ¶·ÑÇÒÎÞ·¨ÏÂÔØ»òÄÚÈÝÓÐÎÊÌ⣬ÇëÁªÏµÎÒÃÇЭÖúÄã´¦Àí¡£
΢ÐÅ£ºfanwen365 QQ£º370150219
Copyright © ÔÆÌ⺣ All Rights Reserved. ËÕICP±¸16052595ºÅ-3 ÍøÕ¾µØÍ¼ ¿Í·þQQ£º370150219 ÓÊÏ䣺370150219@qq.com