当前位置:首页 > 人教版高中物理必修二高一物理动能定理机械能守恒检测(计算题)
高中物理学习材料
金戈铁骑整理制作
高一物理动能定理机械能守恒检测(计算题)
1.“绿色奥运”是2008年北京奥运会的三大理念之一,奥委组决定在各比赛场馆适用新型节能环保电动车,届时奥运会500名志愿者将担任司机,负责接送比赛选手和运输器材。在检测某款电动车性能的某次试验中,质量为8×102kg的电动车由静止开始沿平直公路行驶,达到的最大速度为15m/s,利用传感器测得此过程中不同的时刻电动车的牵引力F与对应的速度v,并描绘出F—1/v图像(图中AB、BO均为直线)。假设电动车在行驶中所受的阻力恒定,求: F / N (1)根据图线ABC,判断该环保电动车做什么
A B 运动并计算环保电动车的额定功率
2000 (2)此过程中环保电动车做匀加速直线运动的 加速度大小
(3)环保电动车由静止开始运动,经过多长时间
400 C 速度达到2m/s?
1O 1-1 /s.m15V
A
C 2.如图所示,粗糙的斜面通过一段极小的圆弧与光滑的半圆
yC 轨道在B点相连,整个轨道在竖直平面内,且C点的切线水平。 x现有一个质量为m且可视为质点的小滑块,从斜面上的A点由
O· H 静止开始下滑,并从半圆轨道的最高点C飞出。已知半圆轨道的
R 半径R=1m, A点到水平底面的高度h=5m, 斜面的倾角θ=450,滑块
θ 与斜面间的动摩擦因数μ=0.5, 空气阻力不计,求小滑块在斜面上的
B 落点离水平面的高度。(g=10m/s2)
3.在光滑的水平面有一个静止的物体。现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体,当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J。则在整个过程中,恒力甲、乙对物体做的功分别是多少?
4.从倾角为θ的斜面上,水平抛出一个小球,小球的初动能为EK0,
θ 如图所示,求小球落到斜面上的动能EK 。
5.一物体从斜面底端以初动能E滑向斜面,返回到斜面底端的速度大小为V,克服摩擦力做的功为
E,若物块以初动能2E滑向斜面,则( ) 2A.返回斜面底端时的动能为E B.返回斜面底端时的动能为
3E 2C.返回斜面底端时的速度大小是2V D.返回斜面底端时的速度大小为2v
6.如图所示,位于竖直平面内的光滑圆轨道,由一段斜的直轨道 与之相切的圆形轨道连接而成,圆形轨道的半径为R。一个质 量为m的小物块从斜轨道上某处由静止开始下滑,然后沿圆形 轨道运动。要求物块能通过圆形轨道的最高点,且在该最高点 与轨道间的压力不能超过5mg(g为重力加速度)。求物块初始 位置相对于圆形轨道底部的高度h的取值范围。
7.一种叫做“蹦极”的现代运动,可以用下面的实验来进行模拟, 如图所示,在桌边安一个支架,在支架横臂的端点系上一根橡皮 绳,其重力可不计,劲度系数为k,橡皮绳的弹力与其伸长的长 度成正比。橡皮绳另一端系一个质量为m的小球,使小球从支架 横臂高处由静止下落,小球落到最低点时,便又被橡皮绳拉回然后 再落下······已知橡皮绳的弹性势能EP?m h R L 1KX2,式中k为劲度 2系数,x为橡皮绳的伸长量或压缩量。若小球下落的最大高度是L,
A 试求橡皮绳的自然长度?
B R 600 8.一个质量m=0.2kg的小球系与轻质弹簧的一端,且套在光滑竖直的
圆环上,弹簧的上端固定于环的最高点A,环的半径R=0.5m,弹簧的
o 原长L0=0.5m,劲度系数为4.8N/m,如图所示,若小球从图中所示的 位置B点由静止开始滑动到最低点C时,弹簧的弹性势能EP弹=0.6J。 求:小球到C点的速度vc的大小。
C
9.如图所示,倾角为θ的光滑斜面上方有两个质量均为m的小球A、B,两小球用一根长为L的轻杆相连,下面的B求离斜面底端的高度为h,两球从静止开始滑下斜面后进入光滑平面(不计与地面碰撞时的机械能损失)求: AL(1)两球在光滑平面上运动时的速度 B(2)在这过程中杆对A求所做的功 (3)试分析在哪个过程杆对小球A做功了
h
θ
10.如图所示,水平轨道AB与放置在竖直平面内的1/4圆弧 O 轨道相连,圆弧轨道B端的切线沿水平方向。一个质量
R F m=1.0kg的滑块(可视为质点),在水平恒力F=5.0N的
作用下,从A点由静止开始运动,已知A、B之间的距离
A B S=5.5m,滑块与水平轨道间的动摩擦因数μ=0.10,圆弧轨
道的半径R=0.30m,取g=10m/s2。
(1)求当滑块运动的位移为2.0m时的速度大小;
(2)当滑块运动的位移为2.0m时撤去力F,求滑块通过B点时对圆弧轨道的压力大小; (3)滑块运动运动的位移为2.0m时撤去力F后,若滑块恰好能上升到圆弧的最高点,求
在圆弧轨道上滑块克服摩擦力所做的功。 答案
1.(1)AB段匀加速,BC段做加速度减小的加速
C点,车速达到最大,有P0?FVC·····························(1) F=f···································(2) 由(1)(2)得P0=FvC=400×15w=6×103w (2)对AB段由牛顿第二定律有 F-f=ma·································(3) 得出a=2m/s2 (3)B点的速度VB=P0/F=3m/s···································(4) 因此当车速为2m/s时车在做匀加速 故由V=at,得 t=1s················································(5) 2. 由动能定理
C
1·····································(1) mg(h?2R)??mgh?mvc2?0·
2由平抛得 X=Vct·······························································(2) Y=1/2gt2·····························································(3) 几何关系得 H=X·································································(4) Y+H=2R·····························································(5) 由(1)(2)(3)(4)(5)得H?(?1?5)m
3.设力甲作用时,物体的末速度为V1,力乙作用时,物体的末速度为V2
且两段位移大小相等为S,时间相等,因此由平均速度公式(设V1的方向为正方向)
0?V1?t ··········································(1) 2V?V2?t ·力乙作用时:?S?1······································(2) 2力甲作用时:S?由(1)(2)得 V2=2V1····················································(3) 对两过程分别用动能定理有
W甲?12mv1?0 ··································(4) 2 W乙? 而
1212······································(5) mv2?mv1·
2212·············································(6) mv2=32J·
2由(3)(4)(5)(6)得W甲=8J W乙=24J
4.由动能定理mgy=EK- EK0······································(1) x=v0t·············································(2) y=1/2gt2···········································(3) tanθ=y/x··········································(4) 由(1)(2)(3)(4)得EK= EK0(1+4tan2θ)·····················(5) 5.AD
6.由机械能守恒得
1·········································(1) mgh?2mgR?mv2·
2通过最高点得条件
v2 mg?m··················································(2)
R由(1)(2)得
h?5R·······················································(3) 2最高点压力小于5mg
v2有 mg?N?m 且N<5mg
Rv2得6mg?m·················································(4)
R由(1)(4)得
······················································(5) h?5R·
由(3)(5)得
5R?h?5R·····························(6) 27.令小球释放位置为零势能面,橡皮经原长为L0,由机械能守恒 0??mgL?12kx············································(1) 2L?L0?x···················································(2)
由(1)(2)得L0?L?2mgL·······························(3) k8.令C点所在平面为零势能面,B点到C点的竖直距离为h,由机械能守恒
1·········································(1) mgh?mvc2?EP弹·
2由几何关系h?R?Rcos60··································(2) 由(1)(2)得vc?3m/s·····································(3) 9.对A、B组成得系统机械能守恒??EP??EK
01··································(1) mAg(h?lsin?)?mBgh?(mA?mB)V2·
2mA=mB···································································(2) 得v?2gh?glsin?·····················································(3) 对A由动能定理得
12··············································(4) mv·
21由(1)(2)(4)得w??mglsin?·······································(5)
2mg(h?lsin?)?w?10
(1) 由动能定理得 l=2m ??mgl?Fl?12··············································(1) mv?0·
21212·······································(2) mvB?mv·
22 解之得:v=4m/s (2)??mg(s?l)?2vB 在B点有 NB?mg?m·············································(3)
R由(1)(2)(3)得NB=40N
(3)物体在圆弧得最高点时弹力提供向心力,若恰好到最高点,则弹力为零,因此速度为零,设在圆弧轨道上克服摩擦力做的功是wf,由动能定理得 ??mg(s?l)?wf?0?12mvB··········································(4) 2由(1)(2)(4)得 wf=4.5J
共分享92篇相关文档