云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 五自由度工业机器人结构设计毕业论文(设计)

五自由度工业机器人结构设计毕业论文(设计)

  • 62 次阅读
  • 3 次下载
  • 2025/6/4 7:33:08

研制出第一台数控工业机器人原型。1959 年美国 UNIMATION 公司推出第一台工业机器人。美国是机器人的故乡。

20世纪60年代随着传感技术和工业自动化的发展,工业机器人进入发展期,机器人开始向适用化发展,并被用于电焊和喷涂作业。20世纪70年代随着计算机和人工智能的发展,机器人进入适用化时代。日本虽起步较晚,但结合国情,面向中小企业,采取了一系列鼓励使用机器人的措施。其机器人拥有量很快超过了美国,一举成为“机器人王国”。 20世纪80年代工业机器人进入普及时代,汽车、电子等行业开始大量使用工业机器人,推动了机器人产业的发展。工业机器人的应用满足了人们特性化的要求,产品的批量越来越大,品种越来越多,而且产品的一致性也大大提高,为商家占有了更多的市场份额,获得了更多的市场利润。

20世纪90年代初期,工业机器人的生产与需求达到了一个高峰期。1990年世界上新装备工业机器人80943台,1991年装备了76443台,到1991年底世界上己有53万台工业机器人工作在各条战线上[1]~[5]。

目前工业机器人主要应用于制造业中,特别是电器制造、汽车制造、塑料加工、金属加工以及金属制品业等。在日、美、西欧等一些工业发达的国家中,工业机器人得到越来越广泛的应用。随着生产的发展,机器人功能和性能的不断改善和提高,机器人的应用领域日益扩大,其应用范围已不限于制造业,还用于农业、林业、交通运 输业、原子能工业、医疗、福利事业、海洋和太空的开发事业中。

在工业领域广泛应用着工业机器人。我国科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器”。一个典型的机器人系统由本体、关节伺服驱动系统、计算机控制系统、传感系统、通讯接口等几部分组成。一般多自由度串联机器人具有4~6个自由度,其中2~3个自由度决定了末端执行器在空间的位置,其余2~3个自由度决定了末端执行器在空间的姿态。本文设计的机器人具有三个自由度,也就是机器人的整个手臂部分,来决定了末端执行器在空间的位置。

1.2

工业机器人研究的现状与意义

机器人涉及到机械、电子、控制、计算机、人工智能、传感器、通讯与网络等多个学科和领域,是多种高新技术发展成果的综合集成。因此它的发展与上述学科发展密切相关。机器人在制造业的应用范围越来越广阔,其标准化、模块化、网络化和智能化的程度也越来越高,功能越来越强,并向着成套技术和装备的方向发展。机器人应用从传统制造业向非制造

业转变,向以人为中心的个人化和微小型方向发展,并将服务于人类活动的各个领域。总趋势是从狭义的机器人概念向广义的机器人技术(RT) 概念转移;从工业机器人产业向解决工程应用方案业务的机器人技术产业发展。机器人技术(RT)的内涵已变为“灵活应用机器人技术的、具有实在动作功能的智能化系统。”目前,工业机器人技术正在向智能机器和智能系统的方向发展,其发展趋势主要为:结构的模块化和可重构化;控制技术的开放化、PC 化和网络化;伺服驱动技术的数字化和分散化;多传感器融合技术的实用化;工作环境设计的优化和作业的柔性化以及系统的网络化和智能化等方面。

现代科学技术的迅速发展,尤其是进入20世纪80年代以来,机器人技术的进步与其在各个领域的广泛应用,引起了各国专家学者的普遍关注。许多发达国家均把机器人技术的开发、研究列入国家高新技术发展计划。世界各国普遍在高等院校为大学本科生及研究生开设了介绍机器人技术的有关课程。为了培养机器人开发、设计、生产、维护方面的人才,我国很多高校也为本科生和研究生开设了机器人学课程。

本课题为教师自拟课题。本文主要针对五自由度工业机器人进行结构设计。 1.3 国内外机器人研究现状 1.3.1 国外机器人研究现状

国外目前机器人研究的重点主要有以下几个方面[7]~[8]:

(1) 机器人操作机,通过有限元分析、模态分析及仿真设计等现代设计方法的运用,机器人操作机己实现了优化设计。以德国 KUKA 公司为代表的机器人公司,将机器人并联平行四边形结构改为开链结构,拓展了机器人的工作范围,加之轻质铝合金材料的应用大大提高了机器人的性能。

(2) 并联机器人:采用并联机构,利用机器人技术,实现高精度测量及加工,这是机器人技术向数控技术的拓展,为将来实现机器人和数控技术一体化奠定了基础。意大利COMAU公司,日本FANUC等公司已开发出了此类产品。

(3) 控制系统:控制系统的性能进一步提高,已由过去控制标准的6轴机器人发展到现在能够控制21轴甚至27轴机器人,并且实现了软件伺服和全数字控制。人机界面更加友好,基于图形操作的界面也已问世。编程方式仍以示教编程为主,但在某些领域的离线编程已实现实用化。

(4) 传感系统:激光传感器、视觉传感器和力传感器在机器人系统中已得到成功应用,

并实现了焊缝自动跟踪和自动化生产线上物体的自动定位以及精密装配作业等,大大提高了机器人的作业性能和对环境的适应性。日本 KAWASAKI, YASKAWA, FANUC和瑞典ABB、德国KUKA, REIS等公司皆推出了此类产品。

(5) 网络通信功能:日本 YASKAWA 和德国 KUKA 公司的最新机器人控制器已实现了与 Canbus、Profibus 总线及一些网络的联接,使机器人由过去的独立应用向网络 化应用迈进了一大步,也使机器人由过去的专用设备向标准化设备有了发展。

(6) 可靠性:由于微电子技术的快速发展和大规模集成电路的应用,使机器人系统的可靠性有了很大提高。过去机器人系统的可靠性一般为几千小时,而现在已达到5万小时,几乎可以满足任何场合的需求。 1.3.2 国内机器人研究现状

随着科学技术和世界各国机器人技术的发展,我国在机器人科学研究、技术开发和应用工程等方面取得了可喜的进步。从20世纪80年代末到20世纪90年代,国家863计划把机器人列为自动化领域的重要研究课题,系统地开展了机器人基础科学、关键技术与机器人元部件、先进机器人系统集成技术的研究及机器人在自动化工程上的应用。在工业机器人选型方面,确定以开发点焊、弧焊、喷漆、装配、搬运等机器人为主。这是中国机器人事业从研制到应用迈出的重要一步。一批从事机器人研究、开发、应用的人才和队伍在实践中成长、壮大,一批以机器人为主业的产业化基地已经破土而出。

我国近几年机器人自动化生产线已经不断出现,并给用户带来显著效益[9]~[12]。随着我国工业企业自动化水平的不断提高,机器人自动化线的市场也会越来越大,并且逐渐成为自动化生产线的主要方式。我国机器人自动化生产线装备的市场刚刚起步,而国内装备制造业正处于由传统装备向先进制造装备转型的时期,这就给机器人自动化生产线研究开发者带来巨大商机。但是,无论从工业机器人的数量上还是技术上,我们都是比较落后的。而我国作为一个工业大国,不能寄希望从其他国家得到真正的高技术,必须自主的发展我国的高技术,机器人作为高技术领域的一个重要分支,将成为21世纪各国争夺的经济技术制高点。如何在 21世纪加速我国机器人的发展,使我国早日进入机器人大国行列,已成为当务之急。由于目前我国机器人的基础数量太低,以工业机器人为例,到了2010年我国机器人拥有量只能达到世界拥有量1.38%~2%,这与我国作为21世纪前半叶世界主要制造国的要求差距太大,如果这种差距只能以进口机器人来弥补,其巨大损失不是可以用货币损失来计算的。可见,无论从资金方面考虑,还是从长远利益考虑,我们有必要自主地对机器人进行研究和开发。

但是由于国内机器人的科研与开发与国外尚有较大差距,虽然计划开发的机器人基本上采用的是在国外基木成熟的技术,但国内各单位对这些技术的了解有相当部分还停留在文献上或局部技术上。所以我们应该从基本做起,有必要研制少数型号的机器人和开展一批基础技术研究作为机器人课题的主要研究与开发内容。 1.3.3

工业机器人运动学系统研究现状

运动学正问题的研究目前主要是利用齐次坐标变换矩阵方法将位置和姿态统一描述,该法思路清晰,但运算速度较慢,随着机器人机构自由度的增加对运动学逆问题的讨论带来很多不便。运动学逆问题比正问题复杂的多,主要表现在逆解的存在性和唯一性,存在性决定机器人的操作空间,逆解一般来说非唯一。目前对具有特殊形状的机器人机构如球形手腕机器人机构,其逆解是封闭的,但并不唯一。对一般的机器人机构逆解必须使用数值计算方法,因而数值解的计算速度和精度受到人们的关注,同时机器人机构中常见的奇异状态(不可解状态)在数值解中如何避免也是讨论三维问题之一[13] 。

工业机器人运动学方程的计算过程需要解多元非线性方程组,数学上尚无完备的方法求其解析解,机构学研究者采用数值分析的方法,取得了一系列进展。但是多数或者算法不稳定,或者过分依赖初值,且计算量大,求解速度慢。工业机器人机构位置正解的神经网络解法也开始进行探讨。利用神经网络对于非线性映射的强大的逼近能力,采用 BP 网络,利用位置逆解结果作为训练样本,通过大量样本的训练学习,实现机器人从关节变量空间到工作变量空间的非线性映射,从而取得并联机器人运动学正解,避免了求位置正解时公式推导和编程计算等的繁杂性[14]。

运动学方程的建立与求解是一个机器人系统的关键技术,一直受到广泛的关注,但仍然是当今的一个研究热点,有着一定的发展空间。 1.3.4 工业机器人轨迹规划研究的现状与意义

机器人轨迹规划属于机器人底层规划,是在机械手的运动学的基础上,讨论在关节空间和笛卡尔空间中机器人运动过程中的轨迹规划和轨迹生成方法。所谓轨迹是指机械手在运动过程中的位移、速度和加速度。而轨迹规划是根据作业任务的要求,计算出预期的运动轨迹。首先对机器人的任务、运动路径和轨迹进行描述。例如,用户给出手部的目标位姿,规划所要完成的任务是:确定到该目标的路径点、持续时间、运动速度等轨迹参数,并在计算机的内部描述所要求的轨迹,即选择习惯给定及合理的软件数据结构。最后,对内部描述的轨迹,实时计算机器人运动的位移、速度和加 速度,生成运动轨迹。

轨迹规划既可在关节空间也可在直角空间进行,但是所规划的轨迹函数都必须连

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

研制出第一台数控工业机器人原型。1959 年美国 UNIMATION 公司推出第一台工业机器人。美国是机器人的故乡。 20世纪60年代随着传感技术和工业自动化的发展,工业机器人进入发展期,机器人开始向适用化发展,并被用于电焊和喷涂作业。20世纪70年代随着计算机和人工智能的发展,机器人进入适用化时代。日本虽起步较晚,但结合国情,面向中小企业,采取了一系列鼓励使用机器人的措施。其机器人拥有量很快超过了美国,一举成为“机器人王国”。 20世纪80年代工业机器人进入普及时代,汽车、电子等行业开始大量使用工业机器人,推动了机器人产业的发展。工业机器人的应用满足了人们特性化的要求,产品的批量越来越大,品种越来越多,而且产品的一致性也大大提高,为商家占有了更多的市场份额,获得了更多的市场利润。 20世纪90年代初期,工业机器人的

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com