当前位置:首页 > 1200710222+李卫康+数值分析试验一
3.00000000000000 0.76737473203125 1.13839920472005 2.12536321000651 4.00000000000000 0.76735559802702 1.13841014899581 2.12536795006223 5.00000000000000 0.76735379259109 1.13840978216834 2.12536811742152 x = 0.76735379259109 1.13840978216834 2.12536811742152 k = 5 3. 取误差??5%,利用高斯-赛德尔迭代法和SOR迭代法(??1.2)求解线性方程组 ?2x1?6x2?x3??38???3x1?x2?7x3??34 ??8x?x?2x??20123?若发散,将方程组重新编排,保证收敛。 由分析可知原方程组是发散的,将其进行调整后,使其成为对角占优矩阵。 > A=[-8 1 -2;2 -6 -1;-3 -1 7] A = -8 1 -2 2 -6 -1 -3 -1 7 (1)高斯-赛德尔迭代法: >> A=[-8 1 -2;2 -6 -1;-3 -1 7]; b=[--20;-38;-34]; x0=[0 0 0]'; [x,k]=gaosisaide(A,b,x0,0.05,100) 1.00000000000000 -0.52678571428571 7.01488095238095 -4.08078231292517 2.00000000000000 -0.60294430272109 6.81248228458050 -4.14233580336897 3.00000000000000 -0.61285576358520 6.81943737936643 -4.14558998734131 x = -0.61285576358520 6.81943737936643 -4.14558998734131 k = 3 (2)SOR迭代法: A=[-8 1 -2;2 -6 -1;-3 -1 7]; b=[--20;-38;-34]; x0=[0 0 0]'; [x,k]=sor(A,b,x0,0.05,100,1.2) 1.00000000000000 0.30714285714286 5.38317460317460 -2.09540136054422 2.00000000000000 -0.70866530612245 4.33675700680272 -3.24955116034985 3.00000000000000 -0.31622137298348 4.93384805929381 -2.71453442577593 4.00000000000000 -0.46565152210979 4.64765444223029 -2.94744932659513 5.00000000000000 -0.40882006459829 4.77420872881143 -2.84994371915433 6.00000000000000 -0.43045489534566 4.72074281770809 -2.88973690978742 7.00000000000000 -0.42220985867176 4.74269265272494 -2.87377513822562 x = -0.42220985867176 4.74269265272494 -2.87377513822562 k = 7 五,实验过程原始记录(数据,图表,计算等) 六,实验结果分析或总结 通过这次试验我明白了使用MATLAB来计算一些复杂的方程式组,整体来说还是很简单的, 就是需要把公式记牢靠点,同时对于最后一个题,但是分散的时候要学会适当的调整方程组 的位置,使其变为对角占优的矩阵,即可使得方程组收敛!
共分享92篇相关文档