当前位置:首页 > 人教A版高中数学必修五第一章《解三角形》测试题
参考答案
1.D 2.B 3.D 4.A5.A6.D7.B8.D9.D10.A11.C12.A 13.
?32?2?410 , 14.45 15.? 16.??32?33??a2?c2?b2sinA17. 解:(1)由余弦定理以及二倍角的正弦公式得cosB?, ?2ac2sinBa2?c2?b2. 所以由正弦定理可得a?2b?2ac因为b?3,c?1,所以a2?12,即a?23.
b2?c2?a29?1?121(2)由余弦定理cosA????.
2bc63因为0?A??,所以sinA?1?cos2A?1?122. ?93故VABC的面积S?1122bcsinA??3?1??2. 2231318.解:(1)在VABC中,因为cosB=?,所以sinB?22, 3所以sin2B?2sinBcosB??7422,cos2B?2cosB?1??,
99所以sin(2B??131423742?73; )?sin2B?cos2B??(?)??(?)??322292918(2)因为bsinB?asinA?2csinC, 由正弦定理可得b2?a2?2c2,
1a2?c2?b2a2?c2?a2?2c2c由余弦定理可得,cosB??????,
32ac2ac2a所以
a3?. c219.解:(△)在?APC中,设AC?x,则AP?4?x由余弦定理得:
PC2?AC2?AP2?2ACgAPcos?PAC
即:4?x?(4?x)?2?x?(4?x)?即边AC的长为2
221,解之得:x1?x2?2 2(△)由(△)得?APC为等边三角形,作AD?BC于D,则AD?PAsin60??3,
△S?APB?21333,故PB?4 ,?BPA??, PB?AD?PB?32222PB2?PA2?2PB?PAcos??27 3△在?ABP中,由余弦定理得:AB?△在?ABP中由正弦定理得:
427PBAB2321? ,△sin?BAP△ ?,sin?BAP??3sin?BAPsin?BPA727220.解:(1)证明:因为BD?AD? 所以acosB?bcosA?1c, 21c, 21sinC, 2 由正弦定理,得sinAcosB?sinBcosA? 所以sinC?2sin?A?B?.
(2)解:由(1)得,sin?A?B??2sin?A?B?, 所以sinAcosB?cosAsinB?2?sinAcosB?cosAsinB?, 化简,得3cosAsinB?sinAcosB.
3444,所以sinA?,所以tanA?,tanB?, 553944?tanA?tanB39??48. ?? 所以tanC??tan?A?B???441?tanAtanB111??39又cosA?21.(解:(△)因为acosB??2c?b?cosA, 由正弦定理得sinAcosB?cosA?2sinC?sinB?,
即sinAcosB?cosAsinB?2sinCcosA,所以sin?A?B??2sinccosA,
因为sin?A?B??sinC?0,所以cosA?1, 2又因为A?(0,?),所以A??. 3uuuur1uuuruuur(△)由M是BC中点,得AM?(AB?AC),
2uuuur21uuur2uuur2uuuruuur即AM?(AB?AC?2AB?AC),
4所以c2?b2?bc?32,△
又根据余弦定理,有a2?b2?c2?2bccosA?b2?c2?bc?42?16,△ 联立△△,得bc?8. 所以?ABC的面积S?1bcsinA?23. 222解:在VBCD中,CD?21,BD?20,BC?31,
212?202?3121由余弦定理得:cos?BDC???,
2?21?207所以sin?BDC?1?cos2?BDC?43. 7在VACD中,CD?21,?CAD?20??40??60?,
sin?ACD?sin(?BDC?60?)?sin?BDC?cos60??cos?BDC?sin60??53. 14由正弦定理得AD?CD?sin?ACD?sin?CAD21?5314?15(千米)
.
32所以此车距城A有15千米.
共分享92篇相关文档