云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > (新课标版)高考数学二轮复习难点2.6新背景下的概率、统计问题,及统计案例教学案理

(新课标版)高考数学二轮复习难点2.6新背景下的概率、统计问题,及统计案例教学案理

  • 62 次阅读
  • 3 次下载
  • 2025/6/22 0:53:35

新背景下的概率、统计问题,及统计案例

概率统计是历年高考的热点内容之一,考查方式多样,选择题、填空题、解答题中都可能出现,数量各1道,难度中等,主要考查概率与统计的基本概念、公式以及基本技能、方法,以及分析问题、解决问题的能力.通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题.以排列和概率统计知识为工具,考查概率的计算、随机变量的概率分布、均值、方差、抽样方法、样本频率估计、线性回归方程、独立性检验、随机变量的分布列、期望、方差等内容.

1.抽样方法、样本频率估计

抽样方法在高考中常以选择、填空题考查,重点考查分层抽样,难度较低,只要知道用哪种方法抽样,会计算分层抽样各层所抽取样本数即可.在用样本估计总体中,会读图、识图,会从频率分布直方图中分析样本的数字特征(众数、中位数、平均数等),均值,方差,会计算说要求的频率.分层抽样的步骤:(1)分层;(2)按比例确定每层抽取个体的个数;(3)各层抽样(方法可以不同);(4)汇合成样本.解决总体分布估计问题的一般程序如下:(1)先确定分组的组数(最大数据与最小数据之差除以组距得组数);(2)分别计算各组的频数及频率(频率=计.

例1.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从码为( )

A.16 B.17 C.18 D.19 【答案】C

进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号

);(3)画出频率分布直方图,并作出相应的估

例2.若样本数据( )

,,,的标准差为,则数据,,,的标准差为

(A) (B) (C) (D)

1 / 10

思路分析:本题中主要利用系数对标准差的影响求解. 【答案】C

例3. 【2018贵州黔东南州联考】近年呼吁高校招生改革的呼声越来越高,在赞成高校招生改革的市民中按年龄分组,得到样本频率分布直方图如图,其中年龄在1200人,则

的值为( )

岁的有2500人,年龄在

岁的有

A. 0.013 B. 0.13 C. 0.012 D. 0.12 【答案】C

【解析】由题意,得年龄在范围

岁的频率为

,则赞成高校招生改革的市民有

,因为年龄在范围岁的有1200人,则.故选C.

点评:(1)通常我们对总体作出的估计一般分成两种,一种是用样本的频率分布估计总体的频率分布,另一种是用样本的数字特征估计总体的数字特征.(2)在频率分布直方图中,纵轴表示,数据落在各小组内的频率用各小长方形的面积表示,各小长方形的面积总和等于1.(3)连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率分布折线图就会越来越接近于一条光滑的曲线,统计中称之为总体密度曲线,它能够更加精细的反映出总体在各个范围内取值的百分比.

例4. 【2018河南名校联考】为了调查观众对某电视剧的喜爱程度,某电视台在甲乙两地随机抽取了8名观众做问卷调查,得分结果如图所示:

2 / 10

(1)计算甲地被抽取的观众问卷得分的中位数和乙地被抽取的观众问卷得分的平均数;

(2)若从乙地被抽取的8名观众中邀请2人参加调研,求参加调研的观众中恰有1人的问卷调查成绩在90分以上(含90分)的概率.

思路分析:(1)根据茎叶图计算可得中位数及平均数;(2)写出任选两人的所有情况,共有28中,其中符合要求的有12中,根据古典概型概率公式可得.

点评:本题主要考查了茎叶图的概念,古典概型,属于容易题,高考对统计相关知识的考查,重点在于其相关的基本概念,如中位数,方差,极差,茎叶图,回归直线等,要求考生在复习时注意对这些方面的理解与记忆. 2.回归直线方程

“相关关系与函数关系”的区别:函数关系是一种确定性关系,体现的是因果关系;而相关关系是一种非确定性关系,体现的不一定是因果关系,可能是伴随关系.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.正确理解计算b,a的公式和准确的计算是求线性回归方程的关键.回归直线方程y=bx+a必过样本点中心(x,y).在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测.

例5. 【2018华大新高考联盟质检】某地区2008年至2016年粮食产量的部分数据如下表:

3 / 10

(1)求该地区2008年至2016年的粮食年产量与年份之间的线性回归方程;

(2)利用(1)中的回归方程,分析2008年至2016年该地区粮食产量的变化情况,并预测该地区 2018年的粮食产量.

附:回归直线的斜率和截距的最小二乘估计公式分别为,.

思路分析:(1)计算和,利用的计算公式即可得解;(2)由的意义得该地区粮食产量逐年增加,平均每两年增加6. 5 万吨,将

代入中的线性回归方程得预测值.

点评:本题考查线性回归方程,要正确利用平均数公式计算和理解线性回归方程的意义,属于基础题,要^^^

注意计算的准确性.方程y=bx+a是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,^^

(xn,yn)的回归方程,其中a,b是待定参数.对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn)中(x,y)称为样本点的中心.当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.

r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0,表明两个变量之间几乎

不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性. 3.独立性检验

4 / 10

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

新背景下的概率、统计问题,及统计案例 概率统计是历年高考的热点内容之一,考查方式多样,选择题、填空题、解答题中都可能出现,数量各1道,难度中等,主要考查概率与统计的基本概念、公式以及基本技能、方法,以及分析问题、解决问题的能力.通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题.以排列和概率统计知识为工具,考查概率的计算、随机变量的概率分布、均值、方差、抽样方法、样本频率估计、线性回归方程、独立性检验、随机变量的分布列、期望、方差等内容. 1.抽样方法、样本频率估计 抽样方法在高考中常以选择、填空题考查,重点考查分层抽样,难度较低,只要知道用哪种方法抽样,会计算分层抽样各层所抽取样本数即可.在用样本估计总体中,会读图、识图,会从频率分布直方图中分析样本的数字特征(众数、中位数、平均数等

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com