当前位置:首页 > 2001-2012广东高考理科数学卷及答案(整理版) - 图文
?由平移性质得O1?O2?=HB
// ?BO2?//HO1?
?A?G?H?O1?,H?H?A?H?,?O1?H?H??GA?H???2
??GA?H???O1?H?H ??H?O1?H?GH?A??2
?O1?H?H?G ?BO2??H?G
?O1?O2??B?O2?,O1?O2??O2?O2,B?O2??O2?O2?O2? ?O1?O2??平面B?BO2O2?
?O1?O2??BO2? ?BO2??H?B? ?H?B??H?G?H?
?BO2??平面H?B?G.
19.(本小题满分14分)
解:函数f(x)的定义域为(0,??).
f?(x)?2a(1?a)x2 ?2(1?a)x?1x,
当a?1时,方程2a(1-a)x2?2(1?a)x?1?0的判别式
??12(a?1)??1?a??3?.
? ①当0?a?13时,??0,f?(x)有两个零点,
x1a?1)(3a?1)(a?1)(3a?1)1?2a?(2a(1?a)?0,x12?2a?2a(1?a)
且当0?x?x1或x?x2时,f?(x)?0,f(x)在(0,x1)与(x2,??)内为增函数;
当x1?x?x2时,f?(x)?0,f(x)在(x1,x2)内为减函数;
49
②当
13?a?1时,??0,f?(x)?0,所以f(x)在(0,??)内为增函数;
1x?0(x?0),f(x)在(0,??)内为增函数;
③当a?1时,f?(x)?
④当a?1时,??0,x1?12a?(a?1)(3a?1)2a(1?a)?0,
x2?12a?(a?1)(3a?1)2a(1?a)?0,所以f?(x)在定义域内有唯一零点x1,
且当0?x?x1时,f?(x)?0,f(x)在(0,x1)内为增函数;当x?x1时,
f?(x)?0?a?130,f在x(1内为减函数。 )?x(?,)f(x)的单调区间如下表: 13?a?1
(x1,x2)
a?1
(0,x1) (x2,??)
(0,??)
(0,x1) (x1,??)
(其中x1?12a?
(a?1)(3a?1)2a(1?a),x2?12a?
(a?1)(3a?1)2a(1?a) )
20.(本小题满分14分)
解:(1)由a1?b?0,知an?nban?1an?1?n?1?0
nan?1b?1n?1ban?1,A1?
令An?nan1b1b, 1b
当n?2时,An???1b1b??????1bbn?1?1bbAn?1 A1
??n?11n?11n.
1?1?1??nn?b?1b?b??n①当b?1时,An? 1b(b?1)1?b 50
共分享92篇相关文档