当前位置:首页 > 高考试题及答案-数学(理科)-陕西卷
2212(m2?1)?2?36km3(m2?1)?6km?(1?k)?2?222x1x2??x1?x2?2223k2?1??(3k?1)? 3k?1.?AB?(1?k)(x2?x1)3k?1,
12k21212?3??3?(k?0)≤3??4222224212(k?1)(3k?1?m)3(k?1)(9k?1)19k?6k?12?3?6??9k2?2?62222(3k?1)(3k?1)k.
9k2?当且仅当
1k2k??,即
33时等号成立.当k?0时,AB?3,综上所述ABmax?2.
.
?当
133S??AB??maxAB222最大时,△AOB面积取最大值
1akak?1(k?222. (本小题满分12分)Z已知各项全不为零的数列{ak}的前k项和为Sk,且Sk=N*),其中a1=1.
(Ⅰ)求数列{ak}的通项公式;
(Ⅱ)对任意给定的正整数n(n≥2),数列{bk}满足
bk?1k?n?bkab?1(k=1,2,…,n-1),b1=1.求b1+b2+…+bn.
1a1a2a?1a?2k?12Z解:(Ⅰ)当,由及1,得2. 11ak?Sk?Sk?1?akak?1?ak?1aka(a?ak?1)?2ak22当k≥2时,由,得kk?1.
ak?0ak?1?ak?1?2a2m?1?1?(m?1)g2?2m?1a1?S1?因为
,所以
.从而
.
*ak?k(k?N*)m?N,.故.
bk?1n?kn?k????a?kbak?1k?1.
(Ⅱ)因为k,所以ka2m?2?(m?1)g2?2mbk?所以
bkbk?1b(n?k?1)(n?k?2)L(n?1)ggLg2gb1?(?1)k?1gg1?(?1)k?1g1Ck(k?1,2,L,n)nbk?1bk?2b1kg(k?1)gLg2g1n.
1123n?1n??C?C?C?L?(?1)Cn?nnn?b1?b2?b3?L?bnn?故 11012nn??1??C?C?C?L?(?1)gC?nnn??nnn.
??
共分享92篇相关文档