当前位置:首页 > 初中数学压轴题自编49题
(十五)
(十六)
(十七)
(十八)
如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是 ﹣1 .
解:如图所示:∵MN,MA′是定值,A′C长度的最小值时,即A′在MC上时,
过点M作M⊥DC于点F, ∵在边长为2的菱形ABCD中,∠A=60°, ∴CD=2,∠ADCB=120°, ∴∠FDM=60°,∠FMD=30°, ∴FD=MD=, ∴FM=DM×cos30°=∴MC=
=, ,
∴A′C=MC﹣MA′=﹣1. 故答案为:﹣1.
(二十)
如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与x轴交于点C,经过点B的直线y=﹣
x+b与抛物线的另一交点为D.
(1)若点D的横坐标为﹣5,求抛物线的函数表达式;
(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;
(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?
解答: 解:(1)抛物线y=(x+2)(x﹣4), 令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0). ∵直线y=﹣x+b经过点B(4,0),
共分享92篇相关文档