云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 初三数学二次函数知识点总结 12份

初三数学二次函数知识点总结 12份

  • 62 次阅读
  • 3 次下载
  • 2025/7/9 19:45:01

初三数学 二次函数 知识点总结

一、二次函数概念:

a?0)b,c是常数,1.二次函数的概念:一般地,形如y?ax2?bx?c(a,的函数,叫做二次函数。 这

c可以为零.二次函数的定义域是全体实里需要强调:和一元二次方程类似,二次项系数a?0,而b,数.

2. 二次函数y?ax2?bx?c的结构特征:

⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式 二次函数的基本形式y?a?x?h??k的性质: a 的绝对值越大,抛物线的开口越小。 2a的符号 a?0 开口方向 顶点坐标 对称轴 向上 k? ?h,k? ?h,性质 x?h时,y随x的增大而增大;x?h时,y随X=h x的增大而减小;x?h时,y有最小值k. x?h时,y随x的增大而减小;x?h时,y随a?0 向下 X=h x的增大而增大;x?h时,y有最大值k.

三、二次函数图象的平移 1. 平移步骤: k?; 方法一:⑴ 将抛物线解析式转化成顶点式y?a?x?h??k,确定其顶点坐标?h,k?处,具体平移方法如下: ⑵ 保持抛物线y?ax2的形状不变,将其顶点平移到?h,向上(k>0)【或向下(k<0)】平移|k|个单位2y=ax2y=ax2+k向右(h>0)【或左(h<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移 |k|个单位向上(k>0)【或下(k<0)】平移|k|个单位向上(k>0)【或下(k<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移|k|个单位y=a(x-h)2y=a(x-h)2+k

2. 平移规律

在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:

⑴y?ax?bx?c沿y轴平移:向上(下)平移m个单位,y?ax?bx?c变成

22第 1 页 共 3 页

y?ax2?bx?c?m(或y?ax2?bx?c?m)

⑵y?ax2?bx?c沿轴平移:向左(右)平移m个单位,y?ax2?bx?c变成

y?a(x?m)2?b(x?m)?c(或y?a(x?m)2?b(x?m)?c) 四、二次函数y?a?x?h??k与y?ax2?bx?c的比较

从解析式上看,y?a?x?h??k与y?ax2?bx?c是两种不同的表达形式,后者通过配方可以得到前b?4ac?b2b4ac?b2?者,即y?a?x???,其中h??,. k?2a4a2a4a??222五、二次函数y?ax2?bx?c图象的画法 五点绘图法:利用配方法将二次函数y?ax2?bx?c化为顶点式y?a(x?h)2?k,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴c?、以及?0,c?关于对称轴对称的点?2h,c?、与x轴的交点?x1,0?,?x2,0?(若与x轴的交点?0,没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点. 六、二次函数y?ax2?bx?c的性质 ?b4ac?b2?b 1. 当a?0时,抛物线开口向上,对称轴为x??,顶点坐标为??,?. 4a?2a?2a当x??bbb时,y随x的增大而减小;当x??时,y随x的增大而增大;当x??时,y有最小2a2a2a4ac?b2值. 4a?b4ac?b2?bb 2. 当a?0时,抛物线开口向下,对称轴为x??,顶点坐标为??,时,y随?.当x??2a4a2a2a??bb4ac?b2. x的增大而增大;当x??时,y随x的增大而减小;当x??时,y有最大值2a2a4a

七、二次函数解析式的表示方法 1. 一般式:y?ax2?bx?c(a,b,c为常数,a?0);

2. 顶点式:y?a(x?h)2?k(a,h,k为常数,a?0);

3. 两根式:y?a(x?x1)(x?x2)(a?0,x1,x2是抛物线与x轴两交点的横坐标).

注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只

有抛物线与x轴有交点,即b2?4ac?0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

八、二次函数的图象与各项系数之间的关系

1. 二次项系数a

二次函数y?ax2?bx?c中,a作为二次项系数,显然a?0.a决定了抛物线开口的大小和方向,a第 2 页 共 3 页

的正负决定开口方向,a的大小决定开口的大小.

2. 一次项系数b

在二次项系数a确定的前提下,b决定了抛物线的对称轴.

ab的符号的判定:对称轴x??b在y轴左边则ab?0,在y轴的右侧则ab?0,概括的说就是2a“左同右异”

3. 常数项c c决定了抛物线与y轴交点的位置.

b,c都确定,那么这条抛物线就是唯一确定的. 总之,只要a,二次函数解析式的确定:

根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况: 1. 已知抛物线上三点的坐标,一般选用一般式; 2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; 3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式; 4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九、二次函数与一元二次方程: 1. 二次函数与一元二次方程的关系(二次函数与x轴交点情况): 一元二次方程ax2?bx?c?0是二次函数y?ax2?bx?c当函数值y?0时的特殊情况. 图象与x轴的交点个数: ① 当??b2?4ac?0时,图象与x轴交于两点A?x1,0?,B?x2,0?(x1?x2),其中的x1,x2是一元二次方b2?4ac程ax?bx?c?0?a?0?的两根.这两点间的距离AB?x2?x1?. ② 当??0时,图象与x轴只有

a2一个交点; ③ 当??0时,图象与x轴没有交点.1' 当a?0时,图象落在x轴的上方,无论x为任

何实数,都有y?0;2' 当a?0时,图象落在x轴的下方,无论x为任何实数,都有y?0.

2. 抛物线y?ax2?bx?c的图象与y轴一定相交,交点坐标为(0,c); 3. 二次函数常用解题方法总结: ⑴ 求二次函数的图象与x轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数y?ax2?bx?c中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.

第 3 页 共 3 页

搜索更多关于: 初三数学二次函数知识点总结 12份 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

初三数学 二次函数 知识点总结 一、二次函数概念: a?0)b,c是常数,1.二次函数的概念:一般地,形如y?ax2?bx?c(a,的函数,叫做二次函数。 这c可以为零.二次函数的定义域是全体实里需要强调:和一元二次方程类似,二次项系数a?0,而b,数. 2. 二次函数y?ax2?bx?c的结构特征: ⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式 二次函数的基本形式y?a?x?h??k的性质: a 的绝对值越大,抛物线的开口越小。 2a的符号 a?0 开口方向 顶点坐标 对称轴 向上 k? ?h,k? ?h,性质 x?h时,y随x的增大而增大;x?h时,y随X=h x的增大

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com