云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 学而思小学奥数讲座6-10 - 图文

学而思小学奥数讲座6-10 - 图文

  • 62 次阅读
  • 3 次下载
  • 2025/5/1 0:37:54

长的草,即24-12=12头牛吃6周吃完4公顷,所以1头牛吃6×1÷(4÷2)=36周吃完2公顷.

所以10公顷,需要10÷2×6=30头牛专吃新长的草,剩下50-30=20头牛来吃10公顷草,要36 ×(10÷2)÷20=9周.

于是50头牛需要9周吃10公顷的草.

3.如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光.(在这2天内其他草地的草正常生长)之后他让一半牛在②号草地吃草,一半牛在③号草

地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另

外号的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间? 【分析与解】 一群牛,2天,吃了1块+1块2天新长的;一群牛,6天,吃了2块+2块2+6=8

天新长的;即3天,吃了1块+1块8天新长的.即16群牛,1天,吃了1块1天新长的.

又因为,123的牛放在阴影部分的草地中吃草,另外3的牛放在④号草地吃草,它们同时

吃完.所以,

③=2?阴影部分面积.于是,整个为4?191932?2块地.那么需要6?2?4群牛吃新长的草,

于是(1?16)?2?92=现在(?1?34).所以需要吃:(1?16)?2?92?(1?34)=30天.

所以,一开始将一群牛放到整个草地,则需吃30天.

4.现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?

【分析与解】 我们注意到:

牛、马45天吃了 原有+45天新长的草① ?牛、马90天吃了

2原有+90天新长的草⑤ 马、羊60天吃了 原有+60天新长的草② 牛、羊90天吃了 原有+90天新长的草③ ? ? ?

马 90天吃了 原有+90天新长的草④

所以,由④、⑤知,牛吃了90天,吃了原有的草;再结合③知,羊吃了90天,吃了90天新长的草,所以,可以将羊视为专门吃新长的草.

所以,②知马60天吃完原有的草,③知牛90天吃完原有的草.

现在将牛、马、羊放在一起吃;还是让羊吃新长的草,牛、马一起吃原有的草.

所需时间为l÷(190?160)=36天.

所以,牛、羊、马一起吃,需36天.

5. 有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是313公顷、

10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草?

【分析与解】 由于三片牧场的公顷数不一致,给计算带来困难,如果将其均转化为1公顷时的情形.

所以表1中,3.6-0.9=2.7头牛吃4星期吃完l公顷原有的草,那么18星期吃完1公顷原有的草需要2.7÷(18÷4)=0.6头牛,加上专门吃新长草的O.9头牛,共需0.6+0.9=1.5头牛,18星期才能吃完1公顷牧场的草.

所以需1.5×24=36头牛18星期才能吃完第三片牧场的草.

第8讲 不定方程与整数分拆

求二元一次方程与多元一次方程组的自然数解的方法,与此相关或涉及整数分拆的数论问题.

补充说明:对于不定方程的解法,本讲主要利用同余的性质来求解,对于同余性质读者可参考《思维导引详解》五年级[第15讲 余数问题].

解不定方程的4个步骤:①判断是否有解;②化简方程;③求特解;④求通解.

本讲讲解顺序:③?包括1、2、3题?④?②?①包括4、5题?③?包括6、7题,其中③④步骤中加入百鸡问题.

复杂不定方程:⑧、⑨、⑩依次为三元不定方程、较复杂不定方程、复杂不定方程.

整数分拆问题:11、12、13、14、15.

1.在两位数中,能被其各位数字之和整除,而且除得的商恰好是4的数有多少个?

【分析与解】 设这个两位数为ab,则数字和为a?b,这个数可以表达为 10a?b,有?10a?b???a?b??4

即10a?b?4a?4b,亦即b?2a.

注意到a和b都是0到9的整数,且a不能为0,因此a只能为1、2、3或4,相应地b的取值为2、4、6、8.

综上分析,满足题目条件的两位数共有4个,它们是12、24、36和48.

2.设A和B都是自然数,并且满足

A11?B3? 1733,那么A+B等于多少?

【分析与解】 将等式两边通分,有3A+llB=17,显然有B=l,A=2时满足,此时A+B=2+1=3.

3.甲级铅笔7分钱一支,乙级铅笔3分钱一支.张明用5角钱恰好可以买这两种不同的铅笔共多少支?

【分析与解】设购买甲级铅笔x支,乙级铅笔y支.

有7x+3y=50,这个不定方程的解法有多种,在这里我们推荐下面这种利用余数的性质来求解的方法:

将系数与常数对3取模(系数7,3中,3最小):

得x=2(mod 3),所以x可以取2,此时y取12;x还可以取2+3=5,此时y取5; ?x?2?x?5 即?、?,对应x?y为14、10

?y?12?y?5 所以张明用5角钱恰好可以买这两种不同的铅笔共14支或10支.

4.有纸币60张,其中1分、l角、1元和10元各有若干张.问这些纸币的总面值是否能够恰好是100元?

【分析与解】 设1分、1角、1元和10元纸币分别有a张、b张、c张和d张, 列方程如下: a?b?c?d?60?1??? 由?

??a?10b?100c?1000d?10000?2? (2)(1)得9b?99c?999d?9940??③

注意到③式左边是9的倍数,而右边不是9的倍数,因此无整数解,即这些纸币的总面值不能恰好为100元.

5.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种型号的短管,加工损

耗忽略不计.问:剩余部分的管子最少是多少厘米?

【分析与解】 24厘米与36厘米都是12的倍数,所以截成若干根这两种型号的短管,截去的总长度必是12的倍数,但374被12除余2,所以截完以后必有剩余.剩余管料长不小于2厘米.

另一方面,374=27×12+4×12+2,而36÷12=3,24÷12=2,有3×9+2×2=31.即可截成9根36厘米的短管与2根24厘米的短管,剩余2厘米. 因此剩余部分的管子最少是2厘米.

6.某单位的职工到郊外植树,其中有男职工,也有女职工,并且有寺的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?

【分析与解】设男职工x人,孩子y人,则女职工3y-x人(注意,为何设孩子数为y人,

而不是设女职工为y人), 那么有13x?10?3y?x??6y=216,化简为3x?36y=216,即x?12y=72. ??x?12?x?24?x?36?x?48?x?60 有?. ????y?5y?4y?3y?2y?1???????x?12 但是,女职工人数为3y?x必须是自然数,所以只有?时,3y?x?3满足.

?y?5那么男职工数只能为12名

搜索更多关于: 学而思小学奥数讲座6-10 - 图文 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

长的草,即24-12=12头牛吃6周吃完4公顷,所以1头牛吃6×1÷(4÷2)=36周吃完2公顷. 所以10公顷,需要10÷2×6=30头牛专吃新长的草,剩下50-30=20头牛来吃10公顷草,要36 ×(10÷2)÷20=9周. 于是50头牛需要9周吃10公顷的草. 3.如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光.(在这2天内其他草地的草正常生长)之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外号的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com