当前位置:首页 > 2015辽宁省理科数学二模评分标准
(21)(本小题满分12分)
解:(Ⅰ)当a?0时,f(x)?ex?(?e?1)x,f?(x)?ex?(?e?1)
f(x)的单调增区间为?ln(e?1),???;
f(x)的单调减区间为???,ln(e?1)?.??????????????3分
(Ⅱ)g?x??(1?)e?(a?e?1)x?1,g??x??(1?x)e?(a?e?1)
2222xxx1111?g???x???xex?0,∴g??x?在x?[1,??)单调递增,
21g??x??g??1??(a?e?1)?0,a?e?1.??????????????6分 2(Ⅲ)假设函数g?x??e?ax??a?e?1?x?1在区间?0,1?上有零点,
x2即存在x??0,1?,使得e?ax??a?e?1?x?1?0
x2 5
ex?ex?x?1ex?ex?x?1即a?,记h?x??, 22x?xx?xex?ex?x?1ex?ex?x?1ex?x2?ex?2x?1?1??1?0即?0 ①若h?x??x2?xx2?xx2?x由于x??0,1?,有x2?x?0,
即证ex?x2?ex?2x?1?0在x??0,1?恒成立 令H?x??e?x?ex?2x?1,x??0,1?
x2H??x??ex?2x?e?2,H???x??ex?2
当x??0,ln2?,H???x??e?2?0,当x??ln2,1?,H???x??e?2?0,
xx所以当x??0,ln2?,H??x?单调递减,当x??ln2,1?,H??x?单调递增, 而H??0??1?0?e?2?0,H??1??e?2?e?2?0,
H??ln2??eln2?e?2ln?2?4?e?2ln2?0
故在?0,ln2?上存在唯一的实数x0使得H??x0??0
所以,在?0,x0?上H?x?单调递增,在?x0,1?上H?x?单调递减. 而H?0??1?0?0?0?1?0,H?1??e?1?e?2?1?0,
故H?x??0在?0,1?成立,
ex?ex?x?1?1成立. ??????????????9分 即h?x??x2?x
ex?ex?x?1ex?ex?x?1?e?2???e?2??0即②若h?x??22x?xx?x 6
ex?ex?x?1??e?2??x2?x?ex?ex?x?1h?x???e?2??0
x2?xx2?x由于x??0,1?,有x2?x?0,
x2即证e?ex?x?1??e?2?x?x?0在x??0,1?恒成立 x2x2令H?x??e?ex?x?1??e?2?x?x?e??e?2?x?x?1
????H??x??ex?2?e?2?x?1,H???x??ex?2?e?2?
当x?0,ln2?e?2?,H???x??0,当x?ln2?e?2?,1,H???x??0,
所以当x?0,ln2?e?2?,H??x?单调递减,当x?ln2?e?2?,1,H??x?单调递增, 而H??0??0,H??1??3?e?0
在ln2?e?2?,1上存在唯一的实数x0使得H??x0??0 所以,在?0,x0?上H?x?单调递减,在?x0,1?上H?x?单调递增. 又H?0??0,H?1??0,
??????????ex?ex?x?1?e?2成立. 故H?x??0在?0,1?成立,即h?x??x2?x由①②,可得,a??e?2,1?,即存在零点. ??????????12分 (22)解:(Ⅰ)?AB?AC,AF?AE,?CF?BE。
又?CF?CD,BD?BE,?CD?BD又??ABC是等腰三角形,
?AD是?CAB的角分线
∴圆心O在直线AD上.5分
(II)连接DF,由(I)知,DH是⊙O的直径, ??DFH?90,??FDH??FHD?90,
????FDH??G,??G??FHD?90?,??O与AC相切于点F, ??AFH??GFC??FDH,??GFC??G,?CG?CF?CD,
7
∴点C是线段GD的中点. 10分
(23)解:(1)曲线C1的直角坐标方程为(x?2)2?y2?4,所以C1极坐标方程为
??4cos?
曲线C2的直角坐标方程为x2?(y?2)2?4,所以C2极坐标方程为??4sin? 4分
(2)设点P极点坐标(?1,4cos?),即?1?4cos?
点Q极坐标为(?2,4sin(???)) 即?2?4sin(??)
66?则|OP|?|OQ|??1?2?4cos??4sin(???6)=16cos??(31sin??cos?) 22?8sin(2??)?4 8分
6???7????(0,),?2???(,),
2666当2????6??2,即???6时|OP|?|OQ|取最大值,此时P极点坐标(23,?6).10
分
(24)解:(I)?|2a?b|?|2a?b|?|2a?b?2a?b|?4|a|对于任意非零实数a和b恒成立,
当且仅当(2a?b)(2a?b)?0时取等号,
?|2a?b|?|2a?b|的最小值等于4.
|a| 5分
(II) ?|2?x|?|2?x|?|2a?b|?|2a?b|恒成立,故|2?x|?|2?x|不大于
|a|
|2a?b|?|2a?b|的最小值,由(I)可知|2a?b|?|2a?b|的最小值等于4.
|a||a|实数x的取值范围即为不等式|2?x|?|2?x|?4的解.
解不等式得?2?x?2.
10分
8
共分享92篇相关文档