云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 山东省泰安市2019-2020学年第一次高考模拟考试数学试卷含解析

山东省泰安市2019-2020学年第一次高考模拟考试数学试卷含解析

  • 62 次阅读
  • 3 次下载
  • 2025/5/4 8:39:26

(1)证明:数列?an?1?为等比数列,并求数列?an?的通项公式; (2)求数列?an?2n?的前n项和Sn.

nn?12【答案】(1)见解析,an?2?1(2)Sn?2?n?2

【解析】 【分析】

(1)根据等差中项的定义得an?1?1?2an,然后构造新等比数列?an?1?,写出?an?1?的通项即可求 (2)根据(1)的结果,分组求和即可 【详解】

解:(1)由已知可得an?1?1?2an,即an?1?2an?1,可化为an?1?1?2?an?1?,故数列?an?1?是以

a1?1?2为首项,2为公比的等比数列.

即有an?1??a1?1??2n?1?2n,所以an?2n?1.

n(2)由(1)知,数列?an?2n?的通项为:an?2n?2?2n?1,

?Sn??21?22?23?L?2n???1?3?5?L?2n?1?

?2?1?2n?1?2?n2?2n?1?n2?2

n?12故Sn?2?n?2.

【点睛】

考查等差中项的定义和分组求和的方法;中档题. 19.记函数f(x)?x?(1)求m的值;

(2)若正数a,b,c满足abc?m,证明:ab?bc?ca?【答案】(1)m?1(2)证明见解析 【解析】 【分析】

(1)将函数f?x?转化为分段函数或利用绝对值三角不等式进行求解; (2)利用基本不等式或柯西不等式证明即可. 【详解】

1?2x?1的最小值为m. 29.

a?b?c11??3x?,x???22?311?解法一:(1)f(x)???x?,??x?

222?11?3x?,x??22?当x??1?1?时,f(x)?f????2, 2?2?当?11?1??x?,f(x)?f???1, 22?2?当x?1?1?时,f(x)?f???1, 2?2?所以m?fmin(x)?1

11??3x?,x???22?311?解法二:(1)f(x)???x?,??x?

222?11?3x?,x??22?如图

当x?1时,m?fmin(x)?1 2解法三:(1)f(x)?x?111?1??1?1?x??x???x????x???x? 222?2??2?2?1?x?1?1 2??1??1?x?x??0?????1??2??2?当且仅当?即x?时,等号成立.

21?x??0?2?当x?1时m?fmin(x)?1 2解法一:(2)由题意可知,ab?bc?ca?111??, cab9,

a?b?c因为a?0,b?0,c?0,所以要证明不等式ab?bc?ca?只需证明??111????(a?b?c)?9, ?cab?因为?13?111????(a?b?c)?333abc?9成立,

abc?cab?所以原不等式成立.

解法二:(2)因为a?0,b?0,c?0,所以ab?bc?ca?33a2b2c2?0,

a?b?c?33abc?0,

又因为abc?1,

所以(a?b?c)(ab?bc?ac)?33abc?33a2b2c2?9,

(ab?bc?ac)(a?b?c)?9

所以ab?bc?ca?9,原不等式得证.

a?b?c111??, cab9,

a?b?c补充:解法三:(2)由题意可知,ab?bc?ca?因为a?0,b?0,c?0,所以要证明不等式ab?bc?ca?只需证明??111????(a?b?c)?9, abc??2111???111?由柯西不等式得:????(a?b?c)??a??b??c???9成立,

abcabc????所以原不等式成立. 【点睛】

本题主要考查了绝对值函数的最值求解,不等式的证明,绝对值三角不等式,基本不等式及柯西不等式的应用,考查了学生的逻辑推理和运算求解能力.

20.如图,在四棱锥P?ABCD中,底面ABCD是菱形,∠?BAD?60?,△PAD是边长为2的正三角形,PC?10,E为线段AD的中点.

(1)求证:平面PBC?平面PBE;

(2)若F为线段PC上一点,当二面角P?DB?F的余弦值为【答案】(1)见解析; (2)【解析】 【分析】

(1)先证明PE?AD,BE?AD可证AD?平面PBE,再由AD∥BC可证BC⊥平面PBE,即得证;

5时,求三棱锥B?PDF的体积. 55. 9uuuruuurE?xyz(2)以E为坐标原点,建立如图所示空间直角坐标系,设PF??PC(0剟?1),求解面DBP的

urr5法向量m,面DFB的法向量n,利用二面角P?DB?F的余弦值为,可求解?,转化

5VB?PDF?VP?BDC?VF?BDC即得解.

【详解】

(1)证明:因为△PAD是正三角形,E为线段AD的中点, 所以PE?AD.

因为ABCD是菱形,所以AD?AB. 因为?BAD?60?,所以△ABD是正三角形, 所以BE?AD,所以AD?平面PBE. 又AD∥BC,所以BC⊥平面PBE. 因为BC?平面PBC, 所以平面PBC?平面PBE. (2)由(1)知BC⊥平面PBE, 所以BC?PB,PB?而PE?BE?PC2?BC2?6.

3,

所以PB2?PE2?BE2,PE?EB. 又PE?AD,

所以PE?平面ABCD.

以E为坐标原点,建立如图所示空间直角坐标系E?xyz.

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

(1)证明:数列?an?1?为等比数列,并求数列?an?的通项公式; (2)求数列?an?2n?的前n项和Sn. nn?12【答案】(1)见解析,an?2?1(2)Sn?2?n?2 【解析】 【分析】 (1)根据等差中项的定义得an?1?1?2an,然后构造新等比数列?an?1?,写出?an?1?的通项即可求 (2)根据(1)的结果,分组求和即可 【详解】 解:(1)由已知可得an?1?1?2an,即an?1?2an?1,可化为an?1?1?2?an?1?,故数列?an?1?是以a1?1?2为首项,2为公比的等比数列. 即有an?1??a1?1??2n?1?2n,所以an?2n?1. n(2)由(1)知,数列?an?2n?的通项为:an?2n?2?2n?1, ?Sn??21

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com