当前位置:首页 > 2019年全国卷理数高考试题Word版(含答案)
uuuruuuurA(2,0,0),A1(2,0,4),M(1,3,2),N(1,0,2),A1A?(0,0,?4),A1M?(?1,3,?2),uuuuruuuurA1N?(?1,0,?2),MN?(0,?3,0).
uuuur??m?A1M?0m?(x,y,z)设为平面A1MA的法向量,则?uuur,
??m?A1A?0???x?3y?2z?0,所以?可取m?(3,1,0).
???4z?0.uuuur??n?MN?0,n?(p,q,r)rAMN 设为平面1的法向量,则?uuuu??n?A1N?0.???3q?0,所以?可取n?(2,0,?1).
???p?2r?0.于是cos?m,n??m?n2315??,
|m‖n|2?5510. 5所以二面角A?MA1?N的正弦值为19.解:设直线l:y?3x?t,A?x1,y1?,B?x2,y2?. 235?3?(1)由题设得F?,0?,故|AF|?|BF|?x1?x2?,由题设可得x1?x2?.
22?4?9 / 13
3?12(t?1)?y?x?t由?,可得9x2?12(t?1)x?4t2?0,则x1?x2??. 292??y?3x从而?12(t?1)57?,得t??. 92837x?. 28所以l的方程为y?uuuruuur(2)由AP?3PB可得y1??3y2.
3??y?x?t由?,可得y2?2y?2t?0. 22??y?3x所以y1?y2?2.从而?3y2?y2?2,故y2??1,y1?3.
1代入C的方程得x1?3,x2?.
3413. 3故|AB|?20.解:(1)设g(x)?f'(x),则g(x)?cosx?11,g'(x)??sinx?. 2(1?x)1?x???????当x???1,?时,g'(x)单调递减,而g'(0)?0,g'()?0,可得g'(x)在??1,?有唯一零点,
2?2?2??设为?.
???则当x?(?1,?)时,g'(x)?0;当x???,?时,g'(x)?0.
?2???????所以g(x)在(?1,?)单调递增,在??,?单调递减,故g(x)在??1,?存在唯一极大值点,
2??2??10 / 13
???即f'(x)在??1,?存在唯一极大值点.
2??(2)f(x)的定义域为(?1,??).
(i)当x?(?1,0]时,由(1)知,f'(x)在(?1,0)单调递增,而f'(0)?0,所以当x?(?1,0)时,f'(x)?0,故f(x)在(?1,0)单调递减,又f(0)=0,从而x?0是f(x)在(?1,0]的唯一零点.
??????(ii)当x??0,?时,由(1)知,f'(x)在(0,?)单调递增,在??,?单调递减,而f'(0)=0,
22?????????????f'???0,所以存在????,?,使得f'(?)?0,且当x?(0,?)时,f'(x)?0;当x???,??2??2??2????时,f'(x)?0.故f(x)在(0,?)单调递增,在??,?单调递减.
?2?????????????
又f(0)=0,f???1?ln?1???0,所以当x??0,?时,f(x)?0.从而,f(x) 在?0,?
?2??2??2??2?
没有零点.
??????(iii)当x??,??时,f'(x)?0,所以f(x)在?,??单调递减.而
?2??2????所以f(x)在?,??有唯一零点.
?2????f???0,f(?)?0,?2?(iv)当x?(?,??)时,ln(x?1)?1,所以f(x)<0,从而f(x)在(?,??)没有零点. 综上,f(x)有且仅有2个零点. 21.解:X的所有可能取值为?1,0,1.
11 / 13
P(X??1)?(1??)?, P(X?0)????(1??)(1??),P(X?1)??(1??),所以X的分布列为
(2)(i)由(1)得a?0.4,b?0.5,c?0.1.
因此pi=0.4pi?1+0.5 pi+0.1pi?1,故0.1?pi?1?pi??0.4?pi?pi?1?,即
pi?1?pi?4?pi?pi?1?.
又因为p1?p0?p1?0,所以?pi?1?pi?(i?0,1,2,L,7)为公比为4,首项为p1的等比数列. (ii)由(i)可得
48?1p8 ?p8?p7?p7?p6?L?p1?p0?p0 ??p8?p7???p7?p6??L??p1?p0??p1 .
3由于p8=1,故p1?3,所以 84?144?11p4 ??p4?p3???p3?p2???p2?p1???p1?p0??p1 ?.
3257p4表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4?常小,说明这种试验方案合理.
1?0.0039,此时得出错误结论的概率非25712 / 13
21?t24t2?y??1?t?2?1,且x?????22.解:(1)因为?1???1,所以C的直角坐标方程222?21?t?2??1?t??1?t?22y2?1(x??1). 为x?42l的直角坐标方程为2x?3y?11?0.
?x?cos?,(2)由(1)可设C的参数方程为?(?为参数,?π???π).
?y?2sin?π??4cos?????11|2cos??23sin??11|3???C上的点到l的距离为.
77π?2π?时,4cos?????11取得最小值7,故C上的点到l距离的最小值为7.
3?3?当???23.解:(1)因为a2?b2?2ab,b2?c2?2bc,c2?a2?2ac,又abc?1,故有
a2?b2?c2?ab?bc?ca?ab?bc?ca111???.
abcabc所以
111???a2?b2?c2. abc(2)因为a, b, c为正数且abc?1,故有
(a?b)3?(b?c)3?(c?a)3?33(a?b)3(b?c)3(a?c)3 =3(a+b)(b+c)(a+c)
?3?(2ab)?(2bc)?(2ac)
=24.
所以(a?b)3?(b?c)3?(c?a)3?24.
13 / 13
共分享92篇相关文档