当前位置:首页 > 离散数学期末考试试题(有几套带答案)
离散试卷及答案
离散数学试题(A卷及答案)
一、证明题(10分)
1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R
证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R)?((?P∧?Q)∧R))∨((Q∨P)∧R)
?(?(P∨Q)∧R)∨((Q∨P)∧R)?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R?T∧R(置换)?R
2)?x(A(x)?B(x))? ?xA(x)??xB(x)
证明 :?x(A(x)?B(x))??x(?A(x)∨B(x))??x?A(x)∨?xB(x)???xA(x)∨?xB(x)??xA(x)??xB(x)
二、求命题公式(P∨(Q∧R))?(P∧Q∧R)的主析取范式和主合取范式(10分)
证明:(P∨(Q∧R))?(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R))
?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R)
?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧
?R))∨(P∧Q∧R)
?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6
三、推理证明题(10分) 1)
C∨D, (C∨D)? ?E, ?E?(A
(7) R∨S
2) ?x(P(x)?Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x))
证明(1)?xP(x) (2)P(a)
(3)?x(P(x)?Q(y)∧R(x)) (4)P(a)?Q(y)∧R(a) (5)Q(y)∧R(a)
第 1 页 共 20 页
∧?B), (A∧?B)?(R∨S)?R∨S 证明:(1) (C∨D)??E (2) ?E?(A∧?B) (3) (C∨D)?(A∧?B) (4) (A∧?B)?(R∨S) (5) (C∨D)?(R∨S) (6) C∨D
离散试卷及答案
(6)Q(y) (7)R(a) (8)P(a)
(9)P(a)∧R(a) (10)?x(P(x)∧R(x)) (11)Q(y)∧?x(P(x)∧R(x))
四、设m是一个取定的正整数,证明:在任取m+1个整数中,至少有两个整数,它们的差是m的整数倍
证明 设a1,a2,…,am?1为任取的m+1个整数,用m去除它们所得余数只能是0,1,…,m-1,由抽屉原理可知,a1,a2,…,am?1这m+1个整数中至少存在两个数as和at,它们被m除所得余数相同,因此as和at的差是m的整数倍。 五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C) (15分) 证明 ∵x? A-(B∪C)? x? A∧x?(B∪C)? x? A∧(x?B∧x?C)? (x? A∧x?B)∧(x? A∧x?C)? x?(A-B)∧x?(A-C)? x?(A-B)∩(A-C)∴A-(B∪C)=(A-B)∩(A-C)
六、已知R、S是N上的关系,其定义如下:R={
解:R-1={
七、若f:A→B和g:B→C是双射,则(gf)-1=f-1g-1(10分)。
证明:因为f、g是双射,所以gf:A→C是双射,所以gf有逆函数(gf)
-1
:C→A。同理可推f-1g-1:C→A是双射。
因为
f?
R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。
八、(15分)设是半群,对A中任意元a和b,如a≠b必有a*b≠b*a,证明:
(1)对A中每个元a,有a*a=a。
第 2 页 共 20 页
离散试卷及答案
(2)对A中任意元a和b,有a*b*a=a。 (3)对A中任意元a、b和c,有a*b*c=a*c。 证明 由题意可知,若a*b=b*a,则必有a=b。 (1)由(a*a)*a=a*(a*a),所以a*a=a。
(2)由a*(a*b*a)=(a*a)*(b*a)=a*b*(a*a)=(a*b*a)*a,所以有a*b*a=
a。
(3)由(a*c)*(a*b*c)=(a*c*a)*(b*c)=a*(b*c)=(a*b)*c=(a*b)*(c*a*c)=(a*b*c)*(a*c),所以有a*b*c=a*c。
2九、给定简单无向图G=
则G是哈密尔顿图
22证明 若n≥Cm。 ?1+2,则2n≥m-3m+6 (1)
若存在两个不相邻结点u、v使得d(u)+d(v)<m,则有2n=?d(w)<m+(m-
w?V2)(m-3)+m=m2-3m+6,与(1)矛盾。所以,对于G中任意两个不相邻结点
u、v都有
d(u)+d(v)≥m,所以G是哈密尔顿图。
离散数学试题(B卷及答案)
一、证明题(10分)
1)((P∨Q)∧?(?P∧(?Q∨?R)))∨(?P∧?Q)∨(?P∧?R)?T
证明 左端?((P∨Q)∧(P∨(Q∧R)))∨?((P∨Q)∧(P∨R))(摩根律) ? ((P∨Q)∧(P∨Q)∧(P∨R))∨?((P∨Q)∧(P∨R))(分配律) ? ((P∨Q)∧(P∨R))∨?((P∨Q)∧(P∨R)) (等幂律) ?T (代入) 2)?x(P(x)?Q(x))∧?xP(x)??x(P(x)∧Q(x))
证明 ?x(P(x)?Q(x))∧?xP(x)??x((P(x)?Q(x)∧P(x))??x((?P(x)∨Q(x)∧P(x))??x(P(x)∧Q(x))??xP(x)∧?xQ(x)??x(P(x)∧Q(x)) 二、求命题公式(?P?Q)?(P∨?Q) 的主析取范式和主合取范式(10分) 解:(?P?Q)?(P∨?Q)??(?P?Q)∨(P∨?Q)??(P∨Q)∨(P∨?Q)?(?P∧?Q)∨(P∨?Q) ?(?P∨P∨?Q)∧(?Q∨P∨?Q)?(P∨?Q)?M1?m0∨m2∨m3
第 3 页 共 20 页
离散试卷及答案
三、推理证明题(10分) 1)(P?(Q?S))∧(?R∨P)∧Q?R?S
证明:(1)R 附加前提 (2)?R∨P P (3)P T(1)(2),I (4)P?(Q?S) P (5)Q?S T(3)(4),I (6)Q P (7)S T(5)(6),I
(8)R?S CP 2) ?x(P(x)∨Q(x)),?x?P(x)??x
Q(x)
证明:(1)?x?P(x) P (2)?P(c) T(1),US
(3)?x(P(x)∨Q(x)) P (4)P(c)T(3),US
(5)Q(c) T(2)(4),I
(6)?x T(5),EG
∨
Q(c)
Q(x)
四、例5在边长为1的正方形内任意放置九个点,证明其中必存在三个点,使得由它们组成的三角形(可能是退化的)面积不超过1/8(10分)。
证明:把边长为1的正方形分成四个全等的小正方形,则至少有一个小正方形内有三个点,它们组成的三角形(可能是退化的)面积不超过小正方形的一半,即1/8。 五、已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C) (10分) 证明:∵x? A∩(B∪C)? x? A∧x?(B∪C)? x? A∧(x?B∨x?C)?( x? A∧x?B)∨(x? A∧x?C)? x?(A∩B)∨x? A∩C? x?(A∩B)∪(A∩C)∴A∩(B∪C)=(A∩B)∪(A∩C)
六、?={A1,A2,…,An}是集合A的一个划分,定义R={|a、b∈Ai,I=1,2,…,n},则R是A上的等价关系(15分)。
证明:?a∈A必有i使得a∈Ai,由定义知aRa,故R自反。
?a,b∈A,若aRb ,则a,b∈Ai,即b,a∈Ai,所以bRa,故R对称。 ?a,b,c∈A,若aRb 且bRc,则a,b∈Ai及b,c∈Aj。因为i≠j时Ai∩Aj=?,故i=j,即a,b,c∈Ai,所以aRc,故R传递。
第 4 页 共 20 页
共分享92篇相关文档