云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 云南省曲靖市麒麟区九年级数学上册 24.1《圆》教案(1) 新人教版

云南省曲靖市麒麟区九年级数学上册 24.1《圆》教案(1) 新人教版

  • 62 次阅读
  • 3 次下载
  • 2025/6/16 8:45:49

第二十四章 圆

单元要点分析 教学内容

1.本单元数学的主要内容.

(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.

(2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,?圆和圆的位置关系.

(3)正多边形和圆.

(4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积. 2.本单元在教材中的地位与作用.

学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程. 教学目标

1.知识与技能

(1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、?弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.

(2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,?探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线. (3)进一步认识和理解正多边形和圆的关系和正多边的有关计算. (4)熟练掌握弧长和扇形面积公式及其它们的应用;?理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算. 2.过程与方法

(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.?了解概念,理解等量关系,掌握定理及公式.

(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流. (3)在探索圆周角和圆心角之间的关系的过程中,?让学生形成分类讨论的数学思想和归纳的数学思想.

(4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,?使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.

(5)探索弧长、扇形的面积、?圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义.

3.情感、态度与价值观

经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望. 教学重点

1.平分弦(不是直径)的直径垂直于弦,?并且平分弦所对的两条弧及其运用. 2.在同圆或等圆中,相等的圆心角所对的弧相等,?所对的弦也相等及其运用.

3.在同圆或等圆中,同弧或等弧所对的圆周角相等,?都等于这条弧所对的圆心角的一半及其运用.

4.半圆(或直径)所对的圆周角是直角,90?°的圆周角所对的弦是直径及其运用. 5.不在同一直线上的三个点确定一个圆.

6.直线L和⊙O相交?dr及其运用.

7.圆的切线垂直于过切点的半径及其运用.

8.?经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.

9.从圆外一点可以引圆的两条切线,它们的切线长相等,?这一点和圆心的连线平分两条切线的夹角及其运用.

10.两圆的位置关系:d与r1和r2之间的关系:外离?d>r1+r2;外切?d=r1+r2;相交?│r2-r1│

11.正多边形和圆中的半径R、边心距r、中心角θ之间的等量关系并应用这个等量关系解决具体题目.

n?R2n?R 12.n°的圆心角所对的弧长为L=,n°的圆心角的扇形面积是S扇形=及其

360180运用这两个公式进行计算.

13.圆锥的侧面积和全面积的计算. 教学难点

1.垂径定理的探索与推导及利用它解决一些实际问题. 2.弧、弦、圆心有的之间互推的有关定理的探索与推导,?并运用它解决一些实际问题. 3.有关圆周角的定理的探索及推导及其它的运用. 4.点与圆的位置关系的应用. 5.三点确定一个圆的探索及应用.

6.直线和圆的位置关系的判定及其应用. 7.切线的判定定理与性质定理的运用. 8.切线长定理的探索与运用.

9.圆和圆的位置关系的判定及其运用.

10.正多边形和圆中的半径R、边心距r、中心角θ的关系的应用.

n?R2n?R 11.n的圆心角所对的弧长L=及S扇形=的公式的应用.

360180 12.圆锥侧面展开图的理解.

教学关键

1.积极引导学生通过观察、测量、折叠、平移、旋转等数学活动探索定理、?性质、“三个”位置关系并推理证明等活动.

2.关注学生思考方式的多样化,注重学生计算能力的培养与提高.

3.在观察、操作和推导活动中,使学生有意识地反思其中的数学思想方法,?发展学生有条理的思考能力及语言表达能力. 单元课时划分

本单元教学时间约需13课时,具体分配如下: 24.1 圆 3课时 24.2 与圆有关的位置关系 4课时 24.3 正多边形和圆 1课时

24.4 弧长和扇形面积 2课时 教学活动、习题课、小结 3课时

24.1 圆 第一课时

教学内容

1.圆的有关概念.

2.垂径定理:平分弦(不是直径)的直径垂直于弦,?并且平分弦所对的两条弧及其它们的应用. 教学目标

了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题. 从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解. 重难点、关键

1.重点:垂径定理及其运用.

2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题. 教学过程 一、复习引入

(学生活动)请同学口答下面两个问题(提问一、两个同学) 1.举出生活中的圆三、四个.

2.你能讲出形成圆的方法有多少种? 老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆. 二、探索新知

从以上圆的形成过程,我们可以得出: 在一个平面内,线段OA绕它固定的一个端点O旋转一周,?另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”. 学生四人一组讨论下面的两个问题:

问题1:图上各点到定点(圆心O)的距离有什么规律? 问题2:到定点的距离等于定长的点又有什么特点? 老师提问几名学生并点评总结.

(1)图上各点到定点(圆心O)的距离都等于定长(半径r); (2)到定点的距离等于定长的点都在同一个圆上.

因此,我们可以得到圆的新定义:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形. 同时,我们又把

①连接圆上任意两点的线段叫做弦,如图线段AC,AB;

②经过圆心的弦叫做直径,如图24-1线段AB;

AC” ③圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作?,读作“圆AC”或“弧AC”ABC叫做优弧,?小于半圆的弧(如图所示)弧?.大于半圆的弧(如图所示???叫做劣弧. AC或BCBOAC

④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.

(学生活动)请同学们回答下面两个问题.

1.圆是轴对称图形吗?如果是,它的对称轴是什么??你能找到多少条对称轴? 2.你是用什么方法解决上述问题的?与同伴进行交流.

(老师点评)1.圆是轴对称图形,它的对称轴是直径,?我能找到无数多条直径. 3.我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问

C题的.

BA 因此,我们可以得到:

M圆是轴对称图形,其对称轴是任意一条过圆心的直线. O (学生活动)请同学按下面要求完成下题:

如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.

D (1)如图是轴对称图形吗?如果是,其对称轴是什么? (2)你能发现图中有哪些等量关系?说一说你理由. (老师点评)(1)是轴对称图形,其对称轴是CD.

?,??,即直径CD平分弦AB,并且平分?AC?BCAD?BDAB及?ADB. (2)AM=BM,? 这样,我们就得到下面的定理:

垂直于弦的直径平分弦,并且平分弦所对的两条弧. 下面我们用逻辑思维给它证明一下: 已知:直径CD、弦AB且CD⊥AB垂足为M

?,??. AC?BCAD?BD 求证:AM=BM,? 分析:要证AM=BM,只要证AM、BM构成的两个三角形全等.因此,只要连结OA、?OB

或AC、BC即可.

C证明:如图,连结OA、OB,则OA=OB

BA在Rt△OAM和Rt△OBM中 M?OA?OB ∴Rt△OAM≌Rt△OBM ??OM?OM ∴AM=BM ∴点A和点B关于CD对称

O

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

第二十四章 圆 单元要点分析 教学内容 1.本单元数学的主要内容. (1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角. (2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,?圆和圆的位置关系. (3)正多边形和圆. (4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积. 2.本单元在教材中的地位与作用. 学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com