当前位置:首页 > 热力学与统计物理第三章知识总结
由单元系相平衡条件
,知
⑴
由式(1)决定的曲线 P=P(T) ⑵ 称为相平衡曲线。画出P—T关系图即为相图。如图为单元系相图。
三条曲线将图分为三个区域,它们分别表示固相、液相和气相单相存在的温度和压强范围。
化学势用,,表示,在各自的区域内,温度和压强可以单独变化。如图中分开
气、液两相的曲线AC,为汽化线,为气液两相的平衡线,在气化线上气液两相可以平衡共存。气化线上有一点C,温度等于C点时,液相不存在,因而汽化线也不存在,C点称为临界点,相应的温度
和压强
称为临界温度和临界压强。例如,水的临界温度是647.05K,临界压强是.
分开液相和固相区域的曲线AB称为熔解线(或凝固线)。
⑶
分开气相和固相区域的曲线称为升华线。
⑷
由于固相在结构上与气液相差别很大,所以溶解曲线和升华曲线不存在端点,它们只能与其他相平衡曲线相交而中断。
气化线、熔解线和升华线交于一点A,此点三相共存称为三相点,是三条相平衡曲线的交点。在三相点,物质的气、液、固相共存。对于某一物质三相点的温度和压强是确定的。例如,水的三相点温度为273.16K,压强为
.
举例:以液—气两相的转变为例说明由一相到另一相的转变过程。
如图所示:系统开始处在由点1所代表的气相,如果维持温度不变,缓慢地增加外界的压强,则为了维持平衡态,系统的压强将相应地增大。这样系统的状态将沿直线1—2变化,直到与汽化线相交于2点,这时开始有液体凝结,并放出热量(相变潜热)。在点2,气、液两相平衡共存。如果系统放出的热量不断被外界吸收,物质将不断地由气相转变为液相,而保持其温度和压强不变,直到系统全部转变为液相后,如果仍保持温度不变而增加外界的压强,系统的压强将相应地增大,其状态将沿着直线2—3变化。
2、P—T图的热力学理论解释:
由吉布斯函数判据我们知道,在一定温度和压强下,系统的平衡状态是吉布斯函数最小的状态。各相的化学势是温度和压强确定的函数化学势
,如果在某一温度和压强范围内,α相的
较其它相的化学势低,系统将以α相单独存在。这个温度和压强范围就是α相
的单相区域。在这个区域内温度和压强是独立的状态参量。
在气化线AC上,气液两相平衡共存。根据热平衡条件,力学平衡条件和相变平衡条件,可知
,
,
⑸
在三相点,三个相的温度、压强和化学势都相等,即
⑹
三相点的温度和压强由⑹式决确定。
(5)式给出两相平衡共存时压强和温度的关系,是两相平衡曲线的方程式。在平衡曲线上,温度和压强两个参量中只有一个可以独立改变P=P(T)。由于在平衡曲线上两相的化学势相等,两相的任意比例共存,整个系统的吉布斯函数都是相等的。即
,这就是中性平衡。当系统
缓慢地从外界吸收或放出热量时,物质将由一相转变到另一相而始终保持在平衡态,称为平衡相变。
二、克拉珀龙(Clapeyron)方程 1、Clapeyron方程
式子(5)为两相平衡曲线,由于对物质化学势缺乏足够的知识,我们并不知道每一相的化学势,所以相图上的曲线多是由实验直接测定的。但是由热力学理论可以求出相平衡曲线的斜率的表达式称为Clapeyron方程。
如图,在P—T图上画出两相平衡曲线。在相平衡曲线上取邻近的两点A(T,P)和B(T+dT,P+dP)在相平衡曲线上两相的化学势相等,即
⑺
两式相减得:
⑻
这个结果表明,当沿着平衡曲线由A(T,P)变到B(T+dT,P+dP)时,两相化学势的变化必然相等。化学势的全微分为
(9)
其中
和
分别表示摩尔熵和摩尔体积。
所以有
则由(8)式得
整理变形得 ⑽
定义相变潜热:以L表示1摩尔物质由α相变到β相时吸收的热量,称为,摩尔相变潜热。因为相变时物质的温度不变,由熵的定义得
⑾
代入(10)式得 ⑿
此式称为(Clapeyron)方程,它给出两相平衡的斜率。
分析Clapeyron方程:当物质发生熔解、蒸发或升华时,混乱程度增加,因而熵也增加,相变潜热点是正的。由固相或液相转变到气相体积也增加,因此气化线和升华线的斜率dP∕dT是
恒正的。由固相转到液相时,体积也发生膨胀,这时熔解线的斜率也是正的。但有些物质,如冰,在熔解时体积缩小,熔解线的斜率是负的。
2、蒸汽压方程
应用克拉珀龙方程,可以得出蒸汽压方程的近似表达式。与凝聚相(液相或固相)达到平衡的蒸汽称为饱和蒸汽。由于两相平衡时压强与温度间存在一定的关系,饱和蒸汽的压强是温度的函数。描述饱和蒸汽的方程称为蒸汽方程。
若α相为凝聚相,β相为气相,凝聚相的摩尔体积(每摩尔凝聚物的体积)远小于气相的摩尔体积,我们可以略去克拉珀龙方程(10)中的V,并把气相看作理想气体,满足
,
则克拉珀龙方程可简化为
分离变量: ⒀
如果更进一步近似地认为相变潜热与温度无关,积分上式,得
⒁
即蒸汽压方程的近似表达式。可以将式⒁写成
⒂
由式(15)可知,饱和蒸汽压随温度的增加而迅速的增加。由蒸汽压方程,可以确定出在一定温度下的饱和蒸汽压;反过来测定饱和蒸汽压,也可确定出该状态的温度。根据这个原理,可以制造蒸汽压温度计。蒸汽压温度计主要用与低温范围的测量。
共分享92篇相关文档