当前位置:首页 > 2020年山东省潍坊市近三年中考真题数学重组模拟卷(解析版)
21.(2017?潍坊)某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.
(1)根据给出的信息,补全两幅统计图;
(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?
(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?
22.(2018?潍坊)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C. (1)求证:AE与⊙O相切于点A; (2)若AE∥BC,BC=2
,AC=2
,求AD的长.
23.(2019?潍坊)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10万元.
(1)求这种水果今年每千克的平均批发价是多少元?
(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180
千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.)
24.(2017?潍坊)边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,EC=2
.
(1)如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N,当CC′多大时,四边形MCND′为菱形?并说明理由.
(2)如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′、BE′.边D′E′的中点为P.
①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由; ②连接AP,当AP最大时,求AD′的值.(结果保留根号)
25.(2018?潍坊)如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.
(1)求抛物线y2的解析式;
(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;
(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.
2020年山东省潍坊市近三年中考真题数学重组模拟卷
参考答案
一.选择题(共12小题)
1.【解答】解:(A)原式=a5,故A错误; (B)原式=a2,故B错误; (C)原式=2a2,故C错误; 故选:D.
2.【解答】解:0.0000036=3.6×106;
﹣
故选:C.
3.【解答】解:从左边看是两个等宽的矩形,矩形的公共边是虚线, 故选:D.
4.【解答】解:棋盘中心方子的位置用(﹣1,0)表示,则这点所在的横线是x轴,右下角方子的位置用(0,﹣1),则这点所在的纵线是y轴,则当放的位置是(﹣1,1)时构成轴对称图形. 故选:B.
5.【解答】解:作直线l平行于直角三角板的斜边, 可得:∠2=∠3=45°,∠5=∠4=30°, 故∠1的度数是:45°+30°=75°. 故选:C.
6.【解答】解:A、3ax2﹣6ax=3ax(x﹣2),故此选项错误; B、x2+y2,无法分解因式,故此选项错误; C、a2+2ab﹣4b2,无法分解因式,故此选项错误;
D、﹣ax2+2ax﹣a=﹣a(x﹣1)2,正确. 故选:D.
7.【解答】解:∵共有10个数据, ∴x+y=5,
又该队队员年龄的中位数为21.5,即∴x=3、y=2,
则这组数据的众数为21,平均数为所以方差为
=22,
,
×[(19﹣22)2+(20﹣22)2+3×(21﹣22)2+2×(22﹣22)2+2×(24
﹣22)2+(26﹣22)2]=4, 故选:D.
8.【解答】解:由作图步骤可得:OE是∠AOB的角平分线, ∴∠CEO=∠DEO,CM=MD,S四边形OCED=CD?OE, 但不能得出∠OCD=∠ECD, 故选:C.
9.【解答】解:由题意可知:∴解得:x≥2 故选:B.
10.【解答】解:设x1,x2是x2+2mx+m2+m=0的两个实数根, ∴△=﹣4m≥0, ∴m≤0,
∴x1+x2=﹣2m,x1?x2=m2+m,
∴x12+x22=(x1+x2)2﹣2x1?x2=4m2﹣2m2﹣2m=2m2﹣2m=12, ∴m=3或m=﹣2; ∴m=﹣2; 故选:A.
11.【解答】解:∵P(3,60°)或P(3,﹣300°)或P(3,420°),
由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,﹣120°),(3,600°),
共分享92篇相关文档