当前位置:首页 > 初一数学有理数难题与提高练习和培优综合题压轴题(含解析)
∴这样的整数有﹣3、﹣2、﹣1、0、1, 故答案为:﹣3、﹣2、﹣1、0、1; (5)有最小值是3.
【点评】本题是一道去绝对值和数轴相联系的综合试题,考查了取绝对值的方法,取绝对值在数轴上的运用.难度较大.去绝对的关键是确定绝对值里面的数的正负性.
31.(2015?宣城模拟)阅读材料:求值1+2+22+23+24+…+22014 解:设S=1+2+22+23+24+…+22014①,将等式两边同时乘以2得 2S=2+22+23+24+…+22014+22015②
将②﹣①得:S=22015﹣1,即S=1+2+22+23+24+…+22014=22015﹣1 请你仿照此法计算:(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数)
【分析】(1)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值; (2)同理即可得到所求式子的值.
【解答】解:(1)设S=1+2+22+23+24+…+210,
将等式两边同时乘以2得:2S=2+22+23+24+…+210+211, 将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1, 则1+2+22+23+24+…+210=211﹣1; (2)设S=1+3+32+33+34+…+3n①,
两边同时乘以3得:3S=3+32+33+34+…+3n+3n+1②, ②﹣①得:3S﹣S=3n+1﹣1,即S=(3n+1﹣1), 则1+3+32+33+34+…+
(3n+1﹣1).
【点评】此题考查了有理数的乘方,弄清题中的技巧是解本题的关键.
32.(2013秋?延庆县期末)小红和小明在研究绝对值的问题时,碰到了下面的问题:
“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是 ﹣1≤x≤2 ,最小第29页(共39页)
值是 3 ”.
小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”
他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.
请你根据他们的解题解决下面的问题:
(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是 4≤x≤6 ,最小值是 8 .
(2)已知y=|2x+8|﹣4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.
【分析】(1)根据线段上的点与线段的端点的距离最小,可得答案; (2)根据两个绝对值,可得分类的标准,根据每一段的范围,可得到答案. 【解答】解:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是4≤x≤6,最小值是8;
(2)当x≥﹣2,时y=﹣2x,当x=﹣2时,y最大=4; 当﹣4≤x≤﹣2时,y=6x+16,当x﹣2时,y最大=4; 当x≤﹣4,时y=2x,当x=﹣4时,y最大=﹣8, 所以x=﹣2时,y有最大值y=4.
【点评】本题考查了绝对值,线段上的点与线段的端点的距离最小,(2)分类讨论是解题关键.
33.(2014?香洲区校级二模)(1)阅读下面材料:
点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|. 当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;
当A,B两点都不在原点时,
①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;
②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣
第30页(共39页)
a)=|a﹣b|;
③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;
综上,数轴上A,B两点之间的距离|AB|=|a﹣b|. (2)回答下列问题:
①数轴上表示2和5的两点之间的距离是 3 ,数轴上表示﹣2和﹣5的两点之间的距离是 3 ,数轴上表示1和﹣3的两点之间的距离是 4 ;
②数轴上表示x和﹣1的两点A和B之间的距离是 |x+1| ,如果|AB|=2,那么x为 1或﹣3 ;
③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是 ﹣1≤x≤2 . ④解方程|x+1|+|x﹣2|=5.
【分析】①②直接根据数轴上A、B两点之间的距离|AB|=|a﹣b|.代入数值运用绝对值即可求任意两点间的距离.
③根据绝对值的性质,可得到一个一元一次不等式组,通过求解,就可得出x的取值范围.
④根据题意分三种情况:当x≤﹣1时,当﹣1<x≤2时,当x>2时,分别求出方程的解即可.
【解答】解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3; 数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3; 数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4.
②数轴上表示x和﹣1的两点A和B之间的距离是|x﹣(﹣1)|=|x+1|,如果|AB|=2,那么x为1或﹣3.
③当代数式|x+1|十|x﹣2|取最小值时, ∴x+1≥0,x﹣2≤0, ∴﹣1≤x≤2.
第31页(共39页)
④当x≤﹣1时,﹣x﹣1﹣x+2=5,解得x=﹣2; 当﹣1<x≤2时,3≠5,不成立; 当x>2时,x+1+x﹣2=5,解得x=3.
故答案为:3,3,4,|x+1|,1或﹣3,﹣1≤x≤2.
【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,体现了数形结合的优点.
34.(2015秋?南江县校级期中)计算:(×)×(×)×(×)×…×(
×
)×(
×
).
【分析】利用去掉括号找出算式的规律求解即可. 【解答】解:(×)×(×)×(×)×…×(×
)
×
×
×
×)×(
=××××××…×=×=
.
【点评】本题主要考查了有理数的乘法,找出算式的规律是解题的关键.
35.(2014秋?沧州期末)小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.
(1)以小明家为原点,以向东的方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗? (2)小彬家距中心广场多远?
第32页(共39页)
共分享92篇相关文档