当前位置:首页 > 2007美国大学生数学建模竞赛A题特等奖论文
Team1034 Page5of21
toapply.However,theydonotconsideranyotherpossiblyimportantconsiderationsfordistricts,suchas:geographicfreauresofthestateorhowwelltheyencompasscities.
1.2 DevelopingOurApproach
Sinceourgoalistocreatenewmethodsthataddtothediversityofmodelsavailabletoacommittee,weshouldfocusoncreatingdistrictboundariesindependentlyofcurrentdivisions.Notonlyhasthisapproachnotbeenexploredtoitsfullest,butitisnotobviouswhycountiesareagoodbeginningpointforamodel:Countiesarecreatedinthesame arbitrarywayasdistricts,sotheymightalsocontainbiases,sincecountiesaretypically notmuchsmallerthandistricts.Manyofthedivisiondependentmodelsenduprelaxingtheirboundariesfromcountylinesinordertomaintainequalpopulations,whichmakestheinitialassumption ofusing countydivisionsuseless,andalso allows forgerrymanderingifthisrelaxationmethodisnotwellregulated.
Treatingthestateascontinuous(i.e. withoutpreexistingdivisions)doesnotleadto
anyspecifictypeofapproach.Itgivesusalotoffreedom,butatthesametimewecanimposemoreconditions.IftheForrestandHaleet.al.methodsareanyindication,weshouldfocusonkeepingcitieswithindistrictsandintroducegeographicalconsiderations.(Notethattheseconditionsdonothavetobeconsideredifweweretotreattheproblemdiscretelybecausecurrentdivisions,likecounties,areprobablydependentonprominentgeographicalfeatures.)
Goal:Createamethodforredistrictingastatebytreatingthestatecontinu- ously.Werequirethefinaldistrictstocontainequalpopulationsandbecontiguous.Additionally,thedistrictsshouldbeassimpleaspossible(see §2foradefinitionofsimple)andoptimallytakeintoaccountimportant geographicalfeaturesofthestate.
2 NotationandDefinitions
? contiguous:AsetRiscontiguousifitispathwise-connected.
? compactness:Wewouldlikethedefinitionofcompactnesstobeintuitive. One waytolookatcompactnessistheratiooftheareaofaboundedregiontothesquareofitsperimeter. Inotherwords
AR 1 CR= p = Q R2 4πwhereCR isthecompactnessofregionR,AR isthearea,pR istheperimeterand
Qistheisoperimetricquotient. Wedonotexplicitelyusethisequation,butwedo keepthisideainmindwhenweevaluateourmodel.
? simple:Simpleregionsarecompactandconvex.Notethatthisdescribesarelativequality,sowecancompareregionsbytheirsimplicity.
Team1034 Page6of21
? Voronoidiagrams:apartitionoftheplanewithrespecttonnodesintheplane
suchthatpointsintheplaneareinthesameregionofanodeiftheyareclosertothatnodethantoanyotherpoint(foradetaileddescription,see§4.1) ? generatorpoint:anodeofaVoronoidiagram
? degeneracy: thenumberofdistrictsrepresented byonegeneratorpoint ? Voronoiesquediagram: avariationoftheVoronoidiagrambasedonequalmassesoftheregions(see§4.2) ? populationcenter:aregionofhighpopulationdensity
3 TheoreticalEvaluationofourModel
Howweanalyzeourmodel‘sresultsisatrickyaffairsincethereisdisagreementintheredistrictingliteratureonkeyissues.Populationequalityisthemostwelldefined.Bylaw,thepopulationswithindistrictshavetobethesametowithinafewpercentoftheaveragepopulationperdistrict.Nospecificpercentageisgiven,butbeassumedtobearound5%.
Creatingasuccessfulredistrictingmodelalsorequirescontiguity.Inaccordancewithstatelaw,districtsneed tobepath-wiseconnectedsothat onepartofadistrict cannotbeononesideofthestateandtheotherpartontheotherendofthestate.Thisrequirementismeant tomaintainlocalityandcommunitywithindistricts.Itdoesnot,however,restrict islandsdistrictsfromincludingislandsiftheisland‘spopulationisbelowtherequiredpopulationlevel.
Finally,thereisadesireforthedistrictstobe,inoneword,simple.Thereislittletonoagreementonthischaracteristic,andthemostcommonterminologyforthisiscompact.Taylordefinessimpleasameasureofdivergencefromcompactnessduetoindentationoftheboundaryandgivesanequationrelatingthenon-reflexiveandreflexiveinterioranglesofaregion‘sboundary[9].Youngprovidessevenmoremeasuresofcompactness.TheRoecktestisaratiooftheareaofthelargestinscribablecircleinaregiontotheareaofthatregion.TheSchwartzbergtesttakesratiobetweentheadjustedperimeterofaregiontoatheperimeterofacirclewhoseareaisthesameastheareaoftheregion.Themomentofinertiatestmeasuresrelativecompactnessbycomparing―momentsofinertia‖ofdifferentdistrictarrangements.TheBoyce-Clarktestcomparesthedifferencebetweenpointsonadistrict‘sboundaryandthecenterofmassofthatdistrict,wherezerodeviationofthesedifferencesismostdesirable.Theperimetertestcomparesdifferentdistrictarrangementsbuycomputingthetotalperimeterofeach.Finally,thereisthevisualtest.Thistestdecidessimplicitybasedonintuition[11].
Youngnotesthat―ameasure[ofcompactness]onlyindicateswhenaplanismore compactthananother‖[11].Thus,notonlyistherenoconsensusonhowtoanalyzeredistrictingproposals,itisalsodifficulttocomparethem.
Finally,weremarkthattheabovelistonlyconstrainstheshapeofgenerateddistricts.Wehavenotmentionedofanyotherpotentiallyrelevantfeature.Forinstance,itdoesnotconsiderhowwellpopulationsaredistributedorhowwellthenewdistrictboundariesconformwithotherboundaries,likecountiesorzipcodes.Evenwiththisshortlist,itis
Team1034 Page7of21
VoronoiDiagram
Figure1:IllustrationofVoronoidiagramgeneratedwithEuclidean metric.Notethecompactnessandsimplicityoftheregions.
clearthatwearenotinapositiontodefinearigorousdefinitionofsimplicity.Whatwecando,however,isidentifyfeaturesofourproposeddistrictswhicharesimpleandwhich arenot.Thisisinlinewithourgoaldefinedinsec.1.2,sincethislistcanbeprovidedtoadistrictingcommissionwhodecidehowrelevantthosesimplefeaturesare.Wedonotexplicitlydefinesimple,welooselyevaluatesimplicitybasedonoverallcontiguity, compactness, convexity, and intuitiveness of the model’s districts.
4 MethodDescription
OurapproachdependsheavilyonusingVoronoidiagrams.Webeginwithadefinition,itsfeatures,andmotivateitsapplicationtoredistricting.
4.1 VoronoiDiagrams
AVoronoidiagramisasetof polygons,calledVoronoipolygons,formedwithrespecttongeneratorpointscontainedintheplane.EachgeneratorpiiscontainedwithinaVoronoipolygonV(pi)withthefollowingproperty:
V(pi)={q|d(pi,q)≤d(pj,q),iI=j}whered(x,y)isthedistancefrompointxtoy
Thatis,thesetofallsuchqisthesetofpointsclosertopithantoanyotherpj.Thenthediagramisgivenby(seefig1)
V={V(p1),...,V(pn)}
Notethatthereisnoassumptiononthemetricweuse. Outofthemanypossiblechoices,weusethethreemostcommon:
? EuclideanMetric: d(p,q)=
(xp?xq)2+(yp?yq)2
Team1034 Page8of21
? ManhattanMetric:d(p,q)=|xp?xq|+|yp?yq| ? UniformMetric:d(p,q)=max{|xp?xq|,|yp?yq|} 4.1.1 UsefulFeaturesofVoronoiDiagrams
Hereisasummaryofrelevantproperties: ? TheVoronoidiagramforagivenset ofgeneratorpointsisuniqueandproducespolygons,whicharepathconnected. ? Thenearestgeneratorpointtopi determinesanedgeofV(pi)
? ThepolygonallinesofaVoronoipolygondonotintersectthegeneratorpoints. ? WhenworkingintheEuclideanmetric,allregionsareconvex.
Thesepropertiesareimportantforourmodel.Thefirstpropertytellsusthatregard-lessofhowwechooseourgeneratorpointswegenerateuniqueregions.ThisisgoodwhenconsideringthepoliticsofGerrymandering. Thesecondpropertyimpliesthateachregionisdefinedintermsofthesurroundinggeneratorpointswhileinturn,eachregionisrel-ativelycompact.ThesefeaturesofVoronoidiagramseffectivelysatisfytwooutofthethreecriteriaforpartitioningaregion: contiguityandsimplicity.
4.2 Voronoiesque Diagrams
ThesecondmethodweusetocreateregionsisamodificationoftheintuitiveconstructionofVoronoidiagrams.ThemethoddoesnotfallunderthedefinitionofVoronoidiagrams,butsinceitissimilartoVoronoidiagrams,wecallthemVoronoiesquediagrams.Oneway tovisualizetheconstructionofVoronoidiagramsistoimagineshapes(determinedbythemetric)thatgrowradiallyoutwardataconstantratefromeachgeneratorpoint.IntheEuclideanmetrictheseshapesarecircles.IntheManhattanmetrictheyarediamonds.IntheUniformmetric,theyaresquares.Theinterioroftheseshapesformtheregionsofthediagram.Astheregionsintersect,theyformtheboundarylinesfortheregions.Withthispictureinmind,wedefineVoronoiesquediagramstobetheboundariesdefinedbytheintersectionsofthesegrowingshapes.ThefundamentaldifferencebetweenVoronoiandVoronoiesquediagramsisthatVoronoiesquediagramsgrowtheshapesradiallyoutwardataconstantratelikeVoronoidiagrams.TheirradialgrowthisdefinedwithrespecttosomerealfunctiononasubsetofR2(representingthespaceonwhichthediagramis beinggenerated).Seefig.2 Morerigorously,wedefineaVoronoidiagramtobetheintersectionsoftheV‘s,wherei (t)
Vi istheVoronoiesqueregion,orjust?region‘,generatedbythegeneratorpointpiat iterationt.Witheveryiterations,
(t)
and
Vi r (t)
?Vi
(t+1)
r
f(x,y)dA=
Vj
f(x,y)dA
Vi
共分享92篇相关文档