当前位置:首页 > 浙江省2016届高三数学专题复习 专题三 数列模拟演练 理
(2)由(1)知,bnnn=2+(-1)n.记数列{bn}的前2n项和为T2n, 则T1
2
2n2n=(2+2+…+2)+(-1+2-3+4-…+2n). 记A=21
+22
+…+22n,B=-1+2-3+4-…+2n,则 2nA=2+22
+23
+…+22n=2(1-2)2n+1
1-2
=2-2.
B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n,
故数列{bn}的前2n项和Tn=2
2n+1
+n-2.
11.解 (1)由题设,得a1+a2+a3=log2b3,①
a1+a2=log2b2,②
①-②得,ab33=log2b=log264=6.
2
又a1=2,所以公差d=2,因此an=2+2(n-1)=2n. 又a1+a2+a3+…+an=log2bn. 所以
n(2+2n)
n(n+1).
2
=log2bn,故bn=2
(2)由题意,得cn-1
n=(3n+1)4
,
则T2
n-1
n=4+7·4+10·4+…+(3n+1)·4,③
4T2
n-1
n=4·4+7·4+…+(3n-2)·4
+(3n+1)·4n,④
由③-④,得-3T=4+3(4+42
+…+4
n-1
n)-(3n+1)4n
n-1
=4+3·4(1-4)1-4-(3n+1)4n=-3n·4n,
所以Tn*
n=n·4(n∈N).
12.解 (1)∵a2
*
n=S2n-1(n∈N),an≠0. 令n=1,得a1=1;令n=2,得a2=3, ∴等差数列{an}的公差d=2.
从而a1n=2n-1,bn=?12??2n-1-12n+1???,
于是T1n=??1??11??12????1-3??+??3-5??+…+??2n-1-12n+1??????
=
n2n+1
. (2)假设存在正整数m,n(1 12 则???2m+1??=3·n2n+1 ,可得3n=-2m+4m+1m2>0, 5 ∴-2m+4m+1>0,解得1- * 2 66 由于m∈N,m>1,得m=2,此时n=12. 故存在正整数m,n,当且仅当m=2,n=12时,满足T1,Tm,Tn成等比数列. 6
共分享92篇相关文档