当前位置:首页 > 2012五年级希望杯100题
2012年希望杯五年级培训题
1. 9.9?9.99?9.999?9.9999? .
2. 19971997
?9971997?971997?71997?1997?997?97?7? .
3. 669?670?671?668?670?672? .
.....4. 0.12?0.23?0.34?0.45?0.56? .
5. 观察前3个算式,写出第4个算式的得数:
(1)1?1?1,11?11?121,111?111?12321,1111?1111? . (2)2?9?1?11,3?9?12?111,4?9?123?1111,5?9?1234= . 6. 下列6个数依次增大,相邻两个数的差相等,填入中间的4个数。
31、 、 、 、 、76
7. 将3.6948精确到百分位,得 .
8. 已知a?3???3???3、b?4??5???5, ??4???4、c?5???????????55个344个433个5那么a、b、c从小到大排列的顺序是 .
9. 有一列数:1、
12、
12、
13、
13、
13、
14、
14、
14、
14、?,其中,第100个数是 ;前100
个数的和是 。
- 1 -
10.如图,将一个正三角形的每边分别2、3、4等分,得到的相同的小正三角形的个数依次是 、
、 ,如果将正三角形的每边10等分,那么,得到的相同的小正三角形有 个;如果正三角形被分成1225个相同的小正三角形,那么正三角形的每边被 等分。
11.将若干朵花,按5朵红花,9朵黄花,13朵绿花的顺序循环排列,则第249朵花是 色的;前249
朵花中,红花有 朵,黄花有 朵,绿花有 朵。
12.数1445、1080、1261有共同特征,它们的千位数字都是1且恰含有两个相同数字的四位数,这样的
四位数共有 个。
13.一个四位数是奇数,从左到右,它的首位数字小于其余各位数字,而第二位数字大于其余各位数字,
第三位数字等于首末两位数字之和的2倍,则此四位数是 .
14.下表中第1行的数依次增加4,第2行的数依次减少3,那么,上、下两个对应的数中,大数减小数
的差最小是 .
1 1000 5 997 9 994 13 991 ? ? 1329 4 1333 1
15.要使小数0.1234567变成循环小数,并且小数点后第100位上的数字是5,那么表示循环节的两个小
圆点应分别加在 和 这两个数字上。
16.1×2×3×4×?×2010×2011的乘积是一个多位数,而且末尾有许多个零,那么从右到左第一个不等
于零的数是 。
- 2 -
17.若5个连续自然数的乘积是95040,则这5个连续自然数中间的一个数是 。
18.已知甲乙两数的和是231,已知甲数的末位是0,如果把甲数末位的0去掉,正好等于乙数,那么,
甲数是 ,乙数是 .
19.黑板上写有一串数:1、2、3、?、2011、2012,任意擦去几个数,并写上被擦去的几个数的和被11
除所得的余数,如:擦去8、9、10、11、12,因为(8+9+10+11+12)÷11=4??6,于是写上6,这样操作下去,一直到黑板上只剩下一个数,则这个数是 .
20.如果三个连续自然数的最小公倍数是1092,那么这三个数是 .
21.质数a小于13,它加上4或10之后仍然是质数,则a等于 .
22.可以分解为三个质数之积的最小的三位数是 ;可以分解为四个质数之积的最大三位数
是 .
23.用1~9这9个数字组成几个质数,如果每个数字都要用到并且只能用一次,那么最多能组成 个
质数;这些质数的和等于 .
24.写出10个连续的自然数,使得其中只有1个质数: .
25.a、b、c、d是4个非零的一位自然数,用它们组成的24个没有重复数字的四位数的和是
(a?b?c?d)的 倍。
26.从1~20中,选出2个数,使它们的乘积是10的倍数,共有 种选法。
- 3 -
27.将1~10这10个数排成一行,使得每相邻3个数的和都是3的倍数,共有 种排法。
28.从3×3的方格中取出有一个公共顶点但是没有公共边的两个小方格,一共有 种不同的取法。
29.用五种不同的颜色给一个正方体涂色,要求相邻的面异色,共有 种不同的涂色方法。
30.从1写到1000,数字0共出现过 次。
31.1+1×2+1×2×3+1×2×3×4+?+1×2×3×4×?×2011的得数的十位数字是 .
32.我们把形如abba的四位数称为“对称数”,如1221、3333、5005等,那么共有 个“对称数”。
33.要使四个连续的自然数的积与2011相差最小,则这个四位数是 .
34.A、B是两个两位数,小马和小虎计算它们的乘积,小马看错了B的个位数字,得到的结果是1995;
小虎看错了B的十位数字,得到的结果是570,那么A= ,B= .
35.99?9?99?9?199?9的得数末尾有 个连续的零。 ?????????2005个92004个92005个9
36.已知两个自然数分别除以它们的最大公约数所得的商之和是18,而这两个数的最小公倍数是975,则
这两个数是 .
- 4 -
共分享92篇相关文档