当前位置:首页 > 2020年高考数学二轮复习专项微专题核心考点突破:专题20数列的递推关系与通项(解析版)
【答案】an??【解析】
?1,n?1 n?2?2,n?2因为Sn?2ann?2,n?N?*?
*所以Sn?1?2an?1n?3,n?N??
?两式相减得:an?2an?2an?1(n?3,n?N)
即
an?2(n?3,n?N?) an?1所以{an}从第二项起是等比数列, 又S2?2a2?1+a2,所以a2?1
n?2故an?2(n?2, n?N*),又a1?1
?1,n?1. 所以an??n?22,n?2?23.在数列?an?中,已知a1?1,an?1?an?sin_____. 【答案】1010 【解析】
?n?1??,记S2n为数列?an?的前n项和,则S2019?____
Q对任意的n?N?,an?1?an?sin?n?1??,?a2n?1?ann?1???. ?sin2则a1?1,a2?a1?sin??1,a3?a2?sin3??1?1?0,a4?a3?sin2??0,2a5?a4?sin5??0?1?1,a6?a5?sin3??1,所以,an?4?ann?N?. 2??Q2019?4?504?3,且S4?a1?a2?a3?a4?1?1?0?0?2,
?S2019?504S4?a1?a2?a3?504?2?1?1?0?1010,故答案为:1010.
24.设数列?an?满足a1?a,若数列?an?的前2019项的乘积为3,则a??an?1?1??1?an??2ann?N*,
?? 17
______. 【答案】2 【解析】
1?a解:由题意,根据递推式,an?1,故递推式可转化为an?1?n1?a. n1?1?aQa1?a1?a211?a1?132?a1?a,a3?1?a?1?a??,a4??a?11?a,?a, 21?1?aa1?a?31?1a?11?aa1?a?1a1?a45?1?a?a?1?a. 41?a?1a?1?数列?a?an?是以最小正周期为4的周期数列,?a1?a2?a3?a4?a?11?a?????1?a???a?1a?1?1. Q2019?4?504?3,?a1?a1?a2?a2019?a1?a2?a3?a?1?a?????1?a???a?1a?1?3, 解得a?2. 故答案为:2.
25.已知数列{a?2an}满足an,n为偶数1?a2?1,an?2??,则a?an为奇数5+a6=______; 前2n项和S2n=______.
n?1,【答案】7 2n?n2?n?22 【解析】 解:由a为偶数n?2???2an,n?1,n为奇数,
?an可得,数列{an}的所有偶数项构成以1为首项,以2为公比的等比数列, 数列{an}的所有奇数项构成以1为首项,以1为公差的等差数列, ?a5?a1?2d?1?2?1?3,
a6?a2q2?1?22?4,
?a5?a6?7;
18
前2n项和S?n?n?1??11??1?2n?nn2?n?22n?S奇?S偶?n2?1?2?2?2. 故答案为:7;2n?n2?n?22.
26.已知数列?an?的前n项和为Sn,a1?3,an?1?(?1)n(an?2),则S4n+1=_____. 【答案】4n?3 【解析】
根据a?1)nn?1?((an?2)
可得:a2??a1?2
a3?a2?2
a4??a3?2 a5?a4?2 a6??a5?2
L
故: a1?a2?2,a3?a4?2,a5?a6?2L 则S4n?4n
由a1?3,根据上述可求得:
a1?3,a2??1,a3??3,a4?5, a5?3,a6??1,a7??3,a8?5,
L
可得a4n?1?3
? S4n+1?4n?3
故答案为: 4n?3.
27.已知数列?an?满足a1?33,an?1?an?2n,则
ann的最小值为__________.
19
【答案】【解析】
21 2解:∵an+1﹣an=2n,∴当n≥2时,an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+33=n2﹣n+33
且对n=1也适合,所以an=n2﹣n+33.
an33??n?1 nn33?33?n?1,令f′(n)?2?1>0, 设f(n)?nn从而则f(n)在
?33,??上是单调递增,在0,33上是递减的,
???因为n∈N+,所以当n=5或6时f(n)有最小值.
a553a66321?,??, 55662aa21所以n的最小值为6?
n6221 故答案为 2又因为
28.已知是数列_____. 【答案】【解析】
解:∵an+Sn=2n,an+1+Sn+1=2n+1, 两式相减可得2an+1﹣an=2n.
则(2a2﹣a1)(2a3﹣a2)…(2a100﹣a99)=21?22?23…299=
29.已知数列{an}的前项n和为Sn,满足a1??24950.
的前项和,若
,则
12,且an?an?1?2,则S2n?__,an?______.
n?2n2【答案】【解析】
12nn (?1)?
n(n?1)2n?1由题意,数列{an}满足an?an?1?2,
n2?2n20
共分享92篇相关文档