当前位置:首页 > 2020年高考数学二轮复习专项微专题核心考点突破:专题20数列的递推关系与通项(解析版)
Qa1?1??2
??an?1?是首项为?2,公比为?2的等比数列,
?an?1???2?,即an???2??1, ?a2019???2?故选:A
2019nn?1??22019?1,
an?1an??1an?a?5??a?16.若数列满足2n?52n?3,且1,则数列n的前100项中,能被5整除的项数为(
)
A.42 B.40 C.30 D.20 【答案】B 【解析】 由an?1得数列是以1为首项,1为公差的等差数列,即anan?1an?an?????1??2n?52n?32?n?1??32n?3?2n?3?,得a??2n?3?n,要使?a?能被5整除,只需满足n被5整除,在前100项中有annn?n2n?3n?5,10,15?100共20项,或2n?3能被5整除,在前100项中有n?1,6,11,16,?91,96共20项,故总共
40项,故选B.
17.在计算机语言中,有一种函数y?INT?x?叫做取整函数(也叫高斯函数),它表示y等于不超过x的最 INT?3.14??3,大整数,如INT?0.9??0,已知an?INT?且n?2),则b2018?( ) A.2 【答案】D 【解析】 ∵an?INT?B.5
C.7
D.8
?2??10n?,b1?a1,bn?an?10an?1(n?N*,?7??2??10n?,b1?a1,bn?an?10an?1(n?N*,且n?2), ?7? 13
b2?28?10?2?8, ∴a1?2?b1,a2?28,?同理可得b3?5,b4?7,b5?1,b6?4,b7?2,b8?8,L ∴bn?6?bn,即数列?bn?的周期为6. ∴b2018?b336?6?2?b2?8. 故选D.
18.在数列?an?中,a1?0,an?1?an?ln?1?A.an?lnn C.an?nlnn 【答案】A 【解析】
由已知得an?1?an?ln???1?. ?,则?an?的通项公式为( )
n?B.an??n?1?ln?n?1? D.an?lnn?n?2
?n?1???ln?n?1??lnn, ?n?所以an?an?1?lnn?ln?n?1?
an?1?an?2?ln?n?1??ln?n?2?
L
a3?a2?ln3?ln2 a2?a1?ln2?ln1
将上述n?1个式子相加,整理的an?a1?lnn?ln1?lnn 又因为a1?0,所以an?lnn. 故选A.
19.己数列{an}满足a1=1,an+1=lnan+则S2019的值为( ) A.2019
1+1,记Sn=[a1]+ [a2]+·+[an],[t]表示不超过t的最大整数,anB.2018 C.4038 D.4037
14
【答案】D 【解析】
解:依题意得a11?1,a2?lna1?a?1?2,a133?lna2??1?ln2?2??2,3? 1a2an?1?lnan?1a?1?n?3? n可猜想n?3时an??2,3?
证明:令f?x??lnx?1x?1 则f??x??11x?1x?x2?x2
可得f?x?在?0,1?单调递减,在?1,???单调递增.
f?2??f?x??f?3?
即ln2?32?f?x??ln3?43 Q2?ln2?35742?2,3?ln3?3?3满足条件,故猜想正确;
QSn??a1???a2???a3??L??an? ?S2019??a1???a2???a3??L??a2019?
?1?2?2?L?2 ?1?2?2018
?4037
故选:D
20.已知数列{aann}满足:a1?a,an?1??1(n?N?2a) ,则下列关于{an}的判断正确的是(nA.?a?0,?n≥2,使得an?2 B.?a?0,?n≥2,使得an?an?1 C.?a?0,?m?N?,总有am?an(m?n) D.?a?0,?m?N?,总有am?n?an
15
) 【答案】D 【解析】
对于选项A,由于a?0,故an?0恒成立,则an?1?故不存在an?2的项,选项A说法错误;
an1a1??2n??2, 2an2anan?111an?111????2?1,即an?1?an,选项B对于选项B,由于2,结合选项A可知an?2,故an2anan2an说法错误;
对于选项C,构造函数f(x)?x111?x?2,则f'?x???2?0,则函数f?x?在区间??2,??上2x2x???单调递增,则不存在m?N?满足am对于选项D,令a1?2,则a2??an,选项C说法错误;
a1121????2?a1,此时数列?an?为常数列,故2a122?a?0,?m?N?,总有am?n?an,选项D说法正确.
故选D.
n?21.若数列?an?满足:an?1?(?1)an?n(n?N),则a1?a2?L?a100= ________.
【答案】2550 【解析】
n?因为an?1?(?1)an?n(n?N),
故a2?a1?1,a3?a2?2,a4?a3?3,a5?a4?4,a6?a5?5,a7?a6?6,a8?a7?7,… 可得a3?a1?a7?a5?L?1,所以a1?a3?a5?a7...?a97?a99?25.
a4?a2?2?3,a8?a6?6?7,a12?a11?10?11,…
所以a2?a4?a6?a8...?a98?a100?5?25?8?故a1?a2?L?a100=2550. 故答案为:2550
*22.数列?an?满足a1?1,前n项和为Sn,且Sn?2an(n?2,n?N),则{an}的通项公式an?____;
25?24?2525. 2 16
共分享92篇相关文档