当前位置:首页 > 北师大版七年级数学上册第四章基本平面图形试题(修改版)
点评:本题考查了翻折变换和正方形的性质.
17、如图,OB,OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式是∠AOD= 2α﹣β .
考点:角的计算;列代数式;角平分线的定义。
分析:由角平分线的定义可得∠1=∠2,∠3=∠4,又有∠MON与∠BOC的大小,进而可求解∠AOD的大小. 解答:解:如图,
∵OM平分∠AOB,ON平分∠COD,∴∠1=∠2,∠3=∠4, 又∠MON=α,∠BOC=β,∴∠2+∠3=α﹣β,
∴∠AOD=2∠2+2∠3+∠BOC=2(α﹣β)+β=2α﹣β. 故答案为2α﹣β.
点评:熟练掌握角平分线的性质及角的比较运算.
18、如图,∠AOD=∠AOC+ ∠COD =∠DOB+ ∠AOB .
考点:角的计算。 专题:计算题。
分析:如果一条射线在一个角的内部,那么射线所分成的两个小角之和等于这个大角. 解答:解:如右图所示,
∵∠AOC+∠COD=∠AOD,∠BOD+∠AOB=∠AOD, ∴∠AOD=∠AOC+∠COD=∠BOD+∠AOB, 故答案是∠COD,∠AOB.
点评:本题考查了角的计算.
三、解答题(共3小题,满分23分)
19、如图,M是线段AC的中点,N是线段BC的中点. (1)如果AC=8cm,BC=6cm,求MN的长.
(2)如果AM=5cm,CN=2cm,求线段AB的长.
考点:两点间的距离。
9 / 11
专题:常规题型。
分析:(1)因为M是AC的中点,N是BC的中点,则MC=AC,
CN=BC,故MN=MC+CN可求;
(2)根据中点的概念,分别求出AC、BC的长,然后求出线段AB. 解答:解:(1)∵M是AC的中点,N是BC的中点,
∴MN=MC+CN=AC+BC=AB=7cm. 则MN=7cm.
(2)∵M是线段AC的中点,N是线段BC的中点, 若AM=5cm,CN=2cm, ∴AB=AC+BC=10+4=14cm.
点评:本题主要考查两点间的距离的知识点,能够根据中点的概念,用几何式子表示线段的关系,还要注意线段的和差表示方法. 20、如图,污水处理厂要把处理过的水引入排水沟PQ,应如何铺设排水管道,才能用料最省?试画出铺设管道的路线,并说明理由.
10 / 11
考点:轴对称-最短路线问题。
分析:可过点M作MN⊥PQ,沿MN铺设排水管道,才能用料最省
解答:解:如图因为点到直线间的距离垂线段最短.
点评:熟练掌握最短路线的问题,理解点到直线的线段中,垂线段最短.
21、如图,直线AB、CD、EF都经过点O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度数.
考点:垂线;对顶角、邻补角。 专题:计算题。
分析:根据对顶角相等得到∠DOF=∠COE,又∠BOF=∠BOD+∠DOF,代入数据计算即可. 解答:解:如图,∵∠COE=35°, ∴∠DOF=∠COE=35°, ∵AB⊥CD, ∴∠BOD=90°,
∴∠BOF=∠BOD+∠DOF, =90°+35° =125°.
点评:本题主要利用对顶角相等的性质及垂线的定义求解,准确识别图形也是解题的关键之一.
11 / 11
共分享92篇相关文档