当前位置:首页 > 共点力平衡问题题型与解题方法训练
D.当B的质量m2稍许增加时,θ1+θ2一定增大,系统仍能达到平衡状态
变式5.如图(原图所示,相距4m的两根柱子上拴着一根5m长的细绳,细绳上有一光滑的小滑轮,吊着180N的重物,静止时AO,BO绳所受的拉力各是多少?
解答 同一条绳子拉力处处相等,所以T1=T2=T,且与竖直线夹角均为θ,如图所示,根据平衡条件得
,2T cosθ = mg ①
延长BO至墙于C点,过C作水平线交右墙于D点,根据几何关系得AO=OC,而AO+BO=5m,所以BC=OB+OC=5m,在ΔBCD中,有 cosθ =3/ 5 ② 由①②式得 T = 5mg /6 =150N
所以静止时AO、BO绳子所受拉力各是“150N,150N”。 题型12.
例题.如图所示,水平横梁一端A插在墙壁内,另一端装有小滑轮B,一轻绳一端C固定于墙壁上,另一端跨过滑轮后悬挂一质量为m=10kg的重物,?CBA?30?,则滑轮受到绳子作用力为:
A.50N B.503N C.100N D.1003N
C A O A O B B θ D
变式1.(对称原理与隔离法)如图所示,重为G的均匀链条。两端用等长的细线连接,挂在等高的地方,绳与水平方向成θ角。试求:⑴绳子的张力。⑵链条最低点的张力。
变式2.如图所示,质量为m的小球被三根相同的轻质弹簧a、b、c拉住,c 竖直向下,a、b 、c伸长的长度之比为3∶3∶1,则小球受c的拉力大小为(α=120°)
A.mg B.0.5mg C.1.5mg D.3mg. 题型12.
例题.如图所示,A、B两小球固定在水平放置的细杆上,相距为l,两小球各用一根长也是l的细绳连接小球C,三个小球的质量都是m.求杆对小球A的作用力的大小和方向.
解答:C球受力如图所示,根据平衡条件有 2Tcos30° =mg 得 T =
3 mg /3 ①
A球受力如图所示,根据平衡条件有 Tsin60°=mg=N , ② Tcos60° =f, ③
由①②③可得N= 3mg/ 2, f=3mg /6 因此杆对小球A的作用力F=
N2?f2,代入可得
9
F=7/3mgm7/3g, 与竖直方向成a角, tanα = f / N = 3 /9 。
所以杆对小球A的作用力大小为mg,,方向为竖直向上偏左a角,其中α= arctan3 /9。
变式1.(对称原理与整体法、隔离法)如图所示。在光滑的水平杆上,穿着两个重均为2N的球A、B,在两球之间夹着一弹簧,弹簧的劲度系数为10N/m,用两条等长的线将球C与A,B相连,此时弹簧被压缩短10cm,两条线的夹角为60°。求。⑴杆对A球的支持力多大?⑵ C球的重力多大?
10
共分享92篇相关文档