当前位置:首页 > 初一数学竞赛教程含例题练习及答案
例9 把下图中的圆圈任意涂上红色或蓝色。问:有无可能使得在同一条直线上的红圈数都是奇数?请说明理由。
解:假设题中所设想的染色方案能够实现,那么每条直线上代表各点的数字之和便应都是奇数。一共有五条直线,把这五条直线上代表各点的数字之和的这五个奇数再加起来,得到的总和数仍应是一个奇数。但是,由观察可见,图中每个点都恰好同时位于两条直线上,在求上述总和数时,代表各点的数字都恰被加过两次,所以这个总和应是一个偶数。这就导致矛盾,说明假设不成立,染色方案不能实现。
例10 平面上n(n≥2)个点A1,A2,?,An顺次排在同一条直线上,每点涂上黑白两色中的某一种颜色。已知A1和An涂上的颜色不同。证明:相邻两点间连接的线段中,其两端点不同色的线段的条数必为奇数。 证明:赋予黑点以整数值1,白点以整数值2,点Ai以整数
值为ai,当Ai为黑点时,ai=1,当Ai为白点时,ai=2。再赋予线段AiAi+1以整数值ai+ai+1,则两端同色的线段具有的整数值为2或4,两端异色的线段具有的整数值为3。
所有线段对应的整数值的总和为
(a1+a2)+(a2+a3)+(a3+a4)+?+(an-1+an) =a1+an+2(a2+a3+?+an-1)
=2+1+2(a2+a3+?+an-1)=奇数。
设具有整数值2,3,4的线段的条数依次为l,m,n,则 2l+m+4n=奇数。
由上式推知,m必为奇数,证明完毕。
例11 下面的表1是一个电子显示盘,每一次操作可以使某一行四个字母同时改变,或者使某一列四个字母同时改变。改变的规则是按照英文字母的顺序,每个英文字母变成它的下一个字母(即A变成B,B变成C??Z变成A)。问:能否经过若干次操作,使表1变为表2?如果能,请写出变化过程,如果不能,请说明理由。
S O B R K B D S T Z F P H E X G H O C N R T B S A D V X C F Y A 表1 表2 解:不能。将表中的英文字母分别用它们在字母表中的序号代替(即A用1,B用2??Z用26代替)。这样表1和表2就分别变成了表3和表4。 每一次操作中字母的置换相当于下面的置换: 1→2,2→3,?,25→26,26→1。 19 15 2 18 20 26 6 16
5
8 15 3 14 1 4 22 24 表3
11 2 4 19 8 5 24 7 18 20 2 19 3 6 25 1 表4
容易看出,每次操作使四个数字改变了奇偶性,而16个数字的和的奇偶性没有改变。因为表3中16个数字的和为213,表4中16个数字的和为174,它们的奇偶性不同,所以表3不能变成表4,即表1不能变成表2。
例12 如图(1)~(6)所示的六种图形拼成右下图,如果图(1)必须放在右下图的中间一列,应如何拼?
解:把右上图黑、白相间染色(见上图)。其中有11个白格和10个黑格,当图形拼成后,图形(2)(4)(5)(6)一定是黑、白各2格,而图形(3)必须有3格是同一种颜色,另一种颜色1格。因为前四种图形,黑、白已各占2×4=8(格),而黑格总共只有10格,所以图形(3)只能是3白1黑。由此知道图(1)一定在中间一列的黑格,而上面的黑格不可能,所以图(1)在中间一列下面的黑格中。
那么其它图形如何拼呢?为了说明方便,给每一格编一个数码(见左下图)。
因为图(3)是3白1黑,所以为使角上不空出一格,它只能放在(1,3,4,5)或(7,12,13,17)或(11,15,16,21)这三个位置上。
若放在(1,3,4,5)位置上,则图(6)只能放在(7,12,13,18)或(15,16,19,20)或(2,7,8,13)这三个位置,但是前两个位置是明显不行的,否则角上会空出一格。若放在(2,7,8,13)上,则图(2)只能放在(12,17,18,19)位置上,此时不能同时放下图(4)和图(5)。
若把图(3)放在(7,12,13,17)位置上,则方格1这一格只能由图(2)或图(6)来占据。如果图(2)放在(1,2,3,4),那么图(6)无论放在何
6
处都要出现孤立空格;如果把图(6)放在(1,4,5,10),那么2,3这两格放哪一图形都不合适。
因此,图形(3)只能放在(11,15,16,21)。其余图的拼法如右上图。
练习11
1.中国象棋盘的任意位置有一只马,它跳了若干步正好回到原来的位置。问:马所跳的步数是奇数还是偶数?
2.右图是某展览大厅的平面图,每相邻两展览室之间都有门相通。今有人想从进口进去,从出口出来,每间展览厅都要走到,既不能重复也不能遗漏,应如何走法?
3.能否用下图中各种形状的纸片(不能剪开)拼成一个边长为99的正方形(图中每个小方格的边长为1)?请说明理由。
4.用15个1×4的长方形和1个2×2的正方形,能否覆盖8×8的棋盘? 5.平面上不共线的五点,每两点连一条线段,并将每条线段染成红色或蓝色。如果在这个图形中没有出现三边同色的三角形,那么这个图形一定可以找到一红一蓝两个“圈”(即封闭回路),每个圈恰好由五条线段组成。
6.将正方形ABCD分割成n个相等的小正方格,把相对的顶点A,C染成红色,B,D染成蓝色,其他交点任意染成红、蓝两种颜色之一。试说明:恰有三个顶点同色的小方格的数目是偶数。
7.已知△ABC内有n个点,连同A,B,C三点一共(n+3)个点。以这些点为顶点将△ABC分成若干个互不重叠的小三角形。将A,B,C三点分别染成红色、蓝色和黄色。而三角形内的n个点,每个点任意染成红色、蓝色和黄色三色之一。问:三个顶点颜色都不同的三角形的个数是奇数还是偶数?
8.从10个英文字母A,B,C,D,E,F,G,X,Y,Z中任意选5个字母(字母允许重复)组成一个“词”,将所有可能的“词”按“字典顺序”(即英汉辞典中英语词汇排列的顺序)排列,得到一个“词表”: AAAAA,AAAAB,?,AAAAZ,
AAABA,AAABB,?,ZZZZY,ZZZZZ。
设位于“词”CYZGB与“词”XEFDA之间(这两个词除外)的“词”的个数是k,试写出“词表”中的第k个“词”。 练习11答案: 1.偶数。
解:把棋盘上各点按黑白色间隔进行染色(图略)。马如从黑点出发,一步只能跳到白点,下一步再从白点跳到黑点,因此,从原始位置起相继经过:白、黑、白、黑??要想回到黑点,必须黑、白成对,即经过偶数步,回到原来的位置。
2.不能。
2
7
解:用白、黑相间的方法对方格进行染色(如图)。若满足题设要求的走法存在,必定从白色的展室走到黑色的展室,再从黑色的展室走到白色的展室,如此循环往复。现共有36间展室,从白色展室开始,最后应该是黑色展室。但右图中出口处的展室是白色的,矛盾。由此可以判定符合要求的走法不存在。
3.不能。
解:我们将 99×99的正方形中每个单位正方形方格染上黑色或白色,使每两个相邻的方格颜色不同,由于 99×99为奇数,两种颜色的方格数相差为1。而每一种纸片中,两种颜色的方格数相差数为0或3,如果它们能拼成一个大正方形,那么其中两种颜色之差必为3的倍数。矛盾! 4.不能。
解:如图,给8×8的方格棋盘涂上4种不同的颜色(用数字1,2,3,4表示)。显然标有1,2,3,4的小方格各有16个。每个1×4的长方形恰好盖住标有1,2,3,4的小方格各一个,但一个2×2的正方形只能盖住有三种数字的方格,故无法将每个方格盖住,即不可能有题目要求的覆盖。
5.证:设五点为A,B,C,D,E。考虑从A点引出的四条线段:如果其中有三条是同色的,如AB,AC,AD同为红色,那么△BCD的三边中,若有一条是红色,则有一个三边同为红色的三角形;若三边都不是红色,则存在一个三边同为蓝色的三角形。这与已知条件是矛盾的。
所以,从A点出发的四条线段,有两条是红色的,也有两条是蓝色的。当然,从其余四点引出的四条线段也恰有两条红色、两条蓝色,整个图中恰有五条红色线段和五条蓝色线段。
下面只看红色线段,设从A点出发的两条是AB,AE。再考虑从B点出发的另一条红色线段,它不应是BE,否则就有一个三边同为红色的三角形。不妨设其为BD。再考虑从D点出发的另一条红色线段,它不应是DE,否则从C引
8
出的两条红色线段就要与另一条红色线段围成一个红色三角形,故它是DC。最后一条红色线段显然是CE。这样就得到了一个红色的“圈”:
A→B→D→C→E→A。
同理,五条蓝线也构成一个“圈”。
6.证:将红点赋值为0,蓝点赋值为1。再将小方格四顶点上的数的和称为这个小方格的值。若恰有三顶点同色,则该小方格的值为奇数,否则为偶数。在计算所有n2个小方格之值的和时,除A,B,C,D只计算一次外,其余各点都被计算了两次或四次。因为A,B,C,D四个点上的数之和是偶数,所以n2个小方格之值的和是偶数,从而这n2个值中有偶数个奇数。 7.奇数。
解:先对所有的小三角形的边赋值:边的两端点同色,该线段赋值为0,边的两端点不同色,该线段赋值为1。
然后计算每个小三角形的三边赋值之和,有如下三种情况: (1)三个顶点都不同色的三角形,赋值和为3;
(2)三个顶点中恰有两个顶点同色的三角形,赋值和为2; (3)三个顶点同色的三角形,赋值和为0。
设所有三角形的边赋值总和为S,又设(1)(2)(3)三类小三角形的个数分别为a,b,c,于是有
S=3a+2b+0c=3a+2b。(*)
注意到在所有三角形的边赋值总和中,除了AB,BC,CA三条边外,都被计算了两次,故它们的赋值和是这些边赋值和的2倍,再加上△ABC的三边赋值和3,从而S是一个奇数,由(*)式知a是一个奇数,即三个顶点颜色都不同的三角形的个数是一个奇数。 8.EFFGY。
解:将A,B,C,D,E,F,G,X,Y,Z分别赋值为0,1,2,3,4,5,6,7,8,9,则
CYZGB=28961,_XEFDA=74530。
在28961与74530之间共有74530-28961-1=45568(个)数,词表中第45568个词是EFFGY。
9
共分享92篇相关文档