µ±Ç°Î»ÖãºÊ×Ò³ > Êý¾Ý½á¹¹Ï°Ìâ
C£®¼õÉÙ´æÈ¡Ê±¼ä£¬½µµÍÉÏÒç·¢ÉúµÄ»úÂÊ D£®½ÚÊ¡´æ´¢¿Õ¼ä£¬½µµÍÏÂÒç·¢ÉúµÄ»úÂÊ 12. ¶ÔÓÚÕ»²Ù×÷Êý¾ÝµÄÔÔòÊÇ£¨ £©¡£
A. ÏȽøÏȳö B. ºó½øÏȳö C. ºó½øºó³ö D. ²»·Ö˳Ðò
13. ÔÚ×÷½øÕ»ÔËËãʱ,Ó¦ÏÈÅбðÕ»ÊÇ·ñ( ¢Ù ),ÔÚ×÷ÍËÕ»ÔËËãʱӦÏÈÅбðÕ»ÊÇ·ñ( ¢Ú )¡£µ±Õ»ÖÐÔªËØÎªn¸ö,×÷½øÕ»ÔËËãʱ·¢ÉúÉÏÒç,Ôò˵Ã÷¸ÃÕ»µÄ×î´óÈÝÁ¿Îª( ¢Û )¡£ÎªÁËÔö¼ÓÄÚ´æ¿Õ¼äµÄÀûÓÃÂʺͼõÉÙÒç³öµÄ¿ÉÄÜÐÔ,ÓÉÁ½¸öÕ»¹²ÏíһƬÁ¬ÐøµÄÄÚ´æ¿Õ¼äʱ,Ó¦½«Á½Õ»µÄ ( ¢Ü )·Ö±ðÉèÔÚÕâÆ¬ÄÚ´æ¿Õ¼äµÄÁ½¶Ë,ÕâÑù,µ±( ¢Ý )ʱ£¬²Å²úÉúÉÏÒç¡£
¢Ù, ¢Ú: A. ¿Õ B. Âú C. ÉÏÒç D. ÏÂÒç ¢Û: A. n-1 B. n C. n+1 D. n/2 ¢Ü: A. ³¤¶È B. Éî¶È C. Õ»¶¥ D. Õ»µ× ¢Ý: A. Á½¸öÕ»µÄÕ»¶¥Í¬Ê±µ½´ïÕ»¿Õ¼äµÄÖÐÐĵã.
B. ÆäÖÐÒ»¸öÕ»µÄÕ»¶¥µ½´ïÕ»¿Õ¼äµÄÖÐÐĵã.
C. Á½¸öÕ»µÄÕ»¶¥ÔÚÕ»¿Õ¼äµÄijһλÖÃÏàÓö.
D. Á½¸öÕ»¾ù²»¿Õ,ÇÒÒ»¸öÕ»µÄÕ»¶¥µ½´ïÁíÒ»¸öÕ»µÄÕ»µ×. 14. ÊäÈëÐòÁÐΪABC£¬¿ÉÒÔ±äΪCBAʱ£¬¾¹ýµÄÕ»²Ù×÷Ϊ£¨ £©
A. push,pop,push,pop,push,pop B. push,push,push,pop,pop,pop C. push,push,pop,pop,push,pop D. push,pop,push,push,pop,pop
15. ÈôÓÃÒ»¸ö´óСΪ6µÄÊý×éÀ´ÊµÏÖÑ»·¶ÓÁУ¬ÇÒµ±Ç°rearºÍfrontµÄÖµ·Ö±ðΪ0ºÍ3£¬µ±´Ó¶ÓÁÐÖÐɾ³ýÒ»¸öÔªËØ£¬ÔÙ¼ÓÈëÁ½¸öÔªËØºó£¬rearºÍfrontµÄÖµ·Ö±ðΪ¶àÉÙ£¿( ) A. 1ºÍ 5 B. 2ºÍ4 C. 4ºÍ2 D. 5ºÍ1 16. Õ»ºÍ¶ÓÁеĹ²Í¬µãÊÇ£¨ £©¡£
A. ¶¼ÊÇÏȽøÏȳö B. ¶¼ÊÇÏȽøºó³ö C. Ö»ÔÊÐíÔڶ˵㴦²åÈëºÍɾ³ýÔªËØ D. ûÓй²Í¬µã
18. ÈôÒ»¸öÕ»µÄÊäÈëÐòÁÐΪ1,2,3,¡,n£¬Êä³öÐòÁеĵÚÒ»¸öÔªËØÊÇi£¬ÔòµÚj¸öÊä³öÔªËØÊÇ£¨ £©¡£ A. i-j-1 B. i-j C. j-i+1 D. ²»È·¶¨µÄ
19. ij¶ÑÕ»µÄÊäÈëÐòÁÐΪa, b£¬c £¬d,ÏÂÃæµÄËĸöÐòÁÐÖУ¬²»¿ÉÄÜÊÇËüµÄÊä³öÐòÁеÄÊÇ£¨ £©¡£ A. a£¬c£¬b£¬d B. b, c£¬d£¬a C. c, d£¬b, a D. d, c£¬a£¬b 20. ÈôÒ»¸öÕ»ÒÔÏòÁ¿V[1..n]´æ´¢£¬³õʼջ¶¥Ö¸ÕëtopΪn+1£¬ÔòÏÂÃæx½øÕ»µÄÕýÈ·²Ù×÷ÊÇ( )¡£ A£®top=top+1; V [top]=x B. V [top]=x; top=top+1 C. top=top-1; V [top]=x D. V [top]=x; top=top-1
21. ÈôÕ»²ÉÓÃ˳Ðò´æ´¢·½Ê½´æ´¢£¬ÏÖÁ½Õ»¹²Ïí¿Õ¼äV[1..m]£¬top[i]´ú±íµÚi¸öÕ»( i =1,2)Õ»¶¥£¬Õ»1µÄµ×
13
ÔÚv[1]£¬Õ»2µÄµ×ÔÚV[m]£¬ÔòÕ»ÂúµÄÌõ¼þÊÇ£¨ £©¡£
A. |top[2]-top[1]|=0 B. top[1]+1=top[2] C. top[1]+top[2]=m D. top[1]=top[2] 22. Õ»ÔÚ£¨ £©ÖÐÓ¦Óá£
A. µÝ¹éµ÷Óà B. ×Ó³ÌÐòµ÷Óà C. ±í´ïʽÇóÖµ D. A£¬£Â£¬£Ã 23. Ò»¸öµÝ¹éËã·¨±ØÐë°üÀ¨£¨ £©¡£
A. µÝ¹é²¿·Ö B. ÖÕÖ¹Ìõ¼þºÍµÝ¹é²¿·Ö C. µü´ú²¿·Ö D.ÖÕÖ¹Ìõ¼þºÍµü´ú²¿·Ö 24. Ö´ÐÐÍêÏÂÁÐÓï¾ä¶Îºó£¬iֵΪ£º£¨ £© int f(int x)
{ return ((x>0) ? x* f(x-1):2);} int i ; i =f(f(1));
A£®2 B. 4 C. 8 D. ÎÞÏ޵ݹé 25. ±í´ïʽa*(b+c)-dµÄºó׺±í´ïʽÊÇ( )¡£
A£®abcd*+- B. abc+*d- C. abc*+d- D. -+*abcd
26. Éè¼ÆÒ»¸öÅбð±í´ïʽÖÐ×ó£¬ÓÒÀ¨ºÅÊÇ·ñÅä¶Ô³öÏÖµÄËã·¨£¬²ÉÓ㨠£©Êý¾Ý½á¹¹×î¼Ñ¡£ A£®ÏßÐÔ±íµÄ˳Ðò´æ´¢½á¹¹ B. ¶ÓÁÐ C. ÏßÐÔ±íµÄÁ´Ê½´æ´¢½á¹¹ D. Õ»
27. ÓÃÁ´½Ó·½Ê½´æ´¢µÄ¶ÓÁУ¬ÔÚ½øÐÐɾ³ýÔËËãʱ£¨ £©¡£ A. ½öÐÞ¸ÄÍ·Ö¸Õë B. ½öÐÞ¸ÄβָÕë C. Í·¡¢Î²Ö¸Õë¶¼ÒªÐÞ¸Ä D. Í·¡¢Î²Ö¸Õë¿ÉÄܶ¼ÒªÐÞ¸Ä
28. Óò»´øÍ·½áµãµÄµ¥Á´±í´æ´¢¶ÓÁÐʱ,Æä¶ÓÍ·Ö¸ÕëÖ¸Ïò¶ÓÍ·½áµã,Æä¶ÓβָÕëÖ¸Ïò¶Óβ½áµã£¬ÔòÔÚ½øÐÐɾ³ý²Ù×÷ʱ( )¡£
A£®½öÐ޸ĶÓÍ·Ö¸Õë B. ½öÐ޸ĶÓβָÕë
C. ¶ÓÍ·¡¢¶ÓβָÕë¶¼ÒªÐÞ¸Ä D. ¶ÓÍ·,¶ÓβָÕë¶¼¿ÉÄÜÒªÐÞ¸Ä
29. µÝ¹é¹ý³Ì»òº¯Êýµ÷ÓÃʱ£¬´¦Àí²ÎÊý¼°·µ»ØµØÖ·£¬ÒªÓÃÒ»ÖÖ³ÆÎª£¨ £©µÄÊý¾Ý½á¹¹¡£ A£®¶ÓÁÐ B£®¶àάÊý×é C£®Õ» D. ÏßÐÔ±í
30. ¼ÙÉèÒÔÊý×éA[m]´æ·ÅÑ»·¶ÓÁеÄÔªËØ,ÆäͷβָÕë·Ö±ðΪfrontºÍrear£¬Ôòµ±Ç°¶ÓÁÐÖеÄÔªËØ¸öÊýΪ£¨ £©¡£
A£®(rear-front+m)%m B£®rear-front+1 C£®(front-rear+m)%m D£®(rear-front)%m
31. ÈôÓÃÒ»¸ö´óСΪ6µÄÊý×éÀ´ÊµÏÖÑ»·¶ÓÁУ¬ÇÒµ±Ç°rearºÍfrontµÄÖµ·Ö±ðΪ0ºÍ3£¬µ±´Ó¶ÓÁÐÖÐɾ³ýÒ»¸öÔªËØ£¬ÔÙ¼ÓÈëÁ½¸öÔªËØºó£¬rearºÍfrontµÄÖµ·Ö±ðΪ¶àÉÙ£¿( )
14
A. 1ºÍ 5 B. 2ºÍ4 C. 4ºÍ2 D. 5ºÍ1
32. ÒÑÖªÊäÈëÐòÁÐΪabcd ¾¹ýÊä³öÊÜÏÞµÄË«Ïò¶ÓÁкóÄܵõ½µÄÊä³öÐòÁÐÓУ¨ £©¡£ A. dacb B. cadb C. dbca D. bdac E. ÒÔÉϴ𰸶¼²»¶Ô 33. ×î´óÈÝÁ¿ÎªnµÄÑ»·¶ÓÁУ¬¶ÓβָÕëÊÇrear£¬¶ÓÍ·ÊÇfront£¬Ôò¶Ó¿ÕµÄÌõ¼þÊÇ £¨ £©¡£
A. (rear+1) MOD n=front B. rear=front
C£®rear+1=front D. (rear-l) MOD n=front
34. ÉèÕ»SºÍ¶ÓÁÐQµÄ³õʼ״̬Ϊ¿Õ£¬ÔªËØe1£¬e2£¬e3£¬e4,e5ºÍe6ÒÀ´Îͨ¹ýÕ»S£¬Ò»¸öÔªËØ³öÕ»ºó¼´½ø¶ÓÁÐQ£¬Èô6¸öÔªËØ³ö¶ÓµÄÐòÁÐÊÇe2£¬e4£¬e3,e6,e5,e1ÔòÕ»SµÄÈÝÁ¿ÖÁÉÙÓ¦¸ÃÊÇ( )¡£ A£® 6 B. 4 C. 3 D. 2
¶þ¡¢Ìî¿ÕÌâ
1£®ÈôÒ»¸öÕ»ÒÔÊý×éV[1..n]´æ´¢£¬³õʼջ¶¥Ö¸ÕëΪtop£¬ÔªËØXµÄÈëÕ»²Ù×÷Ϊ______________¡£ 2. Õ»ÊÇÒ»ÖÖÏÞ¶¨ÔÚ±íµÄÒ»¶Ë½øÐвåÈëºÍɾ³ýµÄÏßÐÔ±í£¬ÓÖ±»³ÆÎª___________µÄÏßÐÔ±í¡£ 3. Èç¹ûÒ»¸ö¶ÔÏ󲿷ֵذüº¬×Ô¼º£¬»ò×Ô¼º¶¨Òå×Ô¼º£¬Ôò³ÆÕâ¸ö¶ÔÏóÊÇ_________µÄ¶ÔÏó¡£
4.ÉèÓÐÒ»¸ö˳ÐòÕ»S£¬ÔªËØS1£¬S2£¬S3£¬S4£¬S5£¬S6ÒÀ´Î½øÕ»£¬Èç¹û6¸öÔªËØµÄ³öջ˳ÐòΪS2£¬S3£¬S4£¬S6£¬S5£¬S1£¬Ôò˳ÐòÕ»µÄÈÝÁ¿ÖÁÉÙӦΪ ¡£
5.ͨ³£³ÌÐòÔÚµ÷ÓÃÁíÒ»¸ö³ÌÐòʱ£¬¶¼ÐèҪʹÓÃÒ»¸ö À´±£´æ±»µ÷ÓóÌÐòÄÚ·ÖÅäµÄ¾Ö²¿±äÁ¿¡¢ÐÎʽ²ÎÊýµÄ´æ´¢¿Õ¼äÒÔ¼°·µ»ØµØÖ·¡£
6.ÔÚÒ»¸öÁ´Ê½Õ»ÖУ¬ÈôÕ»¶¥Ö¸ÕëµÈÓÚNULLÔòΪ________¡£ 7£®Õ»¶¥µÄλÖÃÊÇËæ×Å_____²Ù×÷¶ø±ä»¯µÄ¡£
8£®ÔÚ¶ÓÁеÄ˳Ðò´æ´¢½á¹¹ÖУ¬µ±²åÈëÒ»¸öеĶÓÁÐÔªËØÊ±£¬Î²Ö¸Õë £¬µ±É¾³ýÒ»¸ö¶ÓÁÐÔªËØÊ±£¬Í·Ö¸Õë ¡£
9.Ñ»·¶ÓÁÐÓÃÊý×éA[0..m-1]´æ·ÅÆäÔªËØÖµ¡£ÒÑÖªÆäͷβָÕë·Ö±ðÊÇfrontºÍrear£¬Ôòµ±Ç°¶ÓÁÐÖеÄÔªËØ¸öÊýÊÇ £¬Åж϶ӿյÄÌõ¼þÊÇ ¡£
10£®Ñ»·¶ÓÁÐQÖУ¬frontºÍrear·Ö±ðָʾ¶ÓÁÐÍ·ÔªËØ¼°¶ÓÎ²ÔªËØµÄλÖã¬×î´ó¶ÓÁ㤶ÈΪmaxsize£¬ÔòÅж϶ӿյÄÌõ¼þÊÇ £¬¶ÓÂúµÄÌõ¼þÊÇ ¡£
11.¶ÓÁеIJåÈë²Ù×÷ÔÚ ½øÐУ¬É¾³ý²Ù×÷ÔÚ ½øÐС£
12.ÔÚ¶ÓÁеÄ˳Ðò´æ´¢½á¹¹ÖУ¬µ±²åÈëÒ»¸öеĶÓÁÐÔªËØÊ±£¬Î²Ö¸Õë £¬µ±É¾³ýÒ»¸ö¶ÓÁÐÔªËØÊ±£¬Í·Ö¸Õë ¡£
13£®Õ»ÊÇ___ ____µÄÏßÐÔ±í£¬ÆäÔËËã×ñÑ_______µÄÔÔò¡£ 14£®____ ___ÊÇÏÞ¶¨½öÔÚ±íβ½øÐвåÈë»òɾ³ý²Ù×÷µÄÏßÐÔ±í¡£
15. ÉèÓÐÒ»¸ö¿ÕÕ»£¬Õ»¶¥Ö¸ÕëΪ1000H(Ê®Áù½øÖÆ)£¬ÏÖÓÐÊäÈëÐòÁÐΪ1£¬2£¬3£¬4£¬5£¬¾¹ý
15
PUSH,PUSH,POP,PUSH,POP,PUSH,PUSHÖ®ºó£¬Êä³öÐòÁÐÊÇ_______£¬¶øÕ»¶¥Ö¸ÕëÖµÊÇ_______H¡£ÉèջΪ˳ÐòÕ»£¬Ã¿¸öÔªËØÕ¼4¸ö×Ö½Ú¡£
16. µ±Á½¸öÕ»¹²ÏíÒ»´æ´¢ÇøÊ±£¬Õ»ÀûÓÃһάÊý×éstack(1,n)±íʾ£¬Á½Õ»¶¥Ö¸ÕëΪtop[1]Óëtop[2]£¬Ôòµ±Õ»1¿Õʱ£¬top[1]Ϊ_______£¬Õ»2¿Õʱ £¬top[2]Ϊ_______£¬Õ»ÂúʱΪ_______¡£ 17£®Á½¸öÕ»¹²Ïí¿Õ¼äʱջÂúµÄÌõ¼þ_______¡£
18£®ÔÚ×÷½øÕ»ÔËËãʱӦÏÈÅбðÕ»ÊÇ·ñ ;ÔÚ×÷ÍËÕ»ÔËËãʱӦÏÈÅбðÕ»ÊÇ·ñ £»µ±Õ»ÖÐÔªËØÎªn¸ö£¬×÷½øÕ»ÔËËãʱ·¢ÉúÉÏÒ磬Ôò˵Ã÷¸ÃÕ»µÄ×î´óÈÝÁ¿Îª ¡£ÎªÁËÔö¼ÓÄÚ´æ¿Õ¼äµÄÀûÓÃÂʺͼõÉÙÒç³öµÄ¿ÉÄÜÐÔ£¬ÓÉÁ½¸öÕ»¹²ÏíһƬÁ¬ÐøµÄ¿Õ¼äʱ£¬Ó¦½«Á½Õ»µÄ ·Ö±ðÉèÔÚÄÚ´æ¿Õ¼äµÄÁ½¶Ë£¬ÕâÑùÖ»Óе± ʱ²Å²úÉúÒç³ö¡£
19. ¶à¸öÕ»¹²´æÊ±£¬×îºÃÓÃ_______×÷Ϊ´æ´¢½á¹¹¡£
20£®±í´ïʽ23+((12*3-2)/4+34*5/7)+108/9µÄºó׺±í´ïʽÊÇ_______¡£
21. Ñ»·¶ÓÁеÄÒýÈ룬ĿµÄÊÇΪÁ˿˷þ_______¡£ 22. ÒÑÖªÁ´¶ÓÁеÄͷβָÕë·Ö±ðÊÇfºÍr£¬Ôò½«ÖµxÈë¶ÓµÄ²Ù×÷ÐòÁÐÊÇ_______¡£ 23£®Çø·ÖÑ»·¶ÓÁеÄÂúÓë¿Õ£¬Ö»ÓÐÁ½ÖÖ·½·¨£¬ËüÃÇÊÇ______ºÍ______¡£
24. ÉèÑ»·¶ÓÁдæ·ÅÔÚÏòÁ¿sq.data[0:M]ÖУ¬Ôò¶ÓÍ·Ö¸Õësq.frontÔÚÑ»·ÒâÒåϵijö¶Ó²Ù×÷¿É±íʾΪ_______£¬ÈôÓÃÎþÉüÒ»¸öµ¥ÔªµÄ°ì·¨À´Çø·Ö¶ÓÂúºÍ¶Ó¿Õ£¨Éè¶ÓβָÕësq.rear£©,Ôò¶ÓÂúµÄÌõ¼þΪ_______¡£ 25£®±í´ïʽÇóÖµÊÇ_______Ó¦ÓõÄÒ»¸öµäÐÍÀý×Ó¡£
Èý¡¢ÅжÏÌâ
1.Õ»ºÍ¶ÓÁж¼ÊÇ˳Ðò´æÈ¡µÄµÄÏßÐÔ±í£¬µ«ËüÃǶԴæÈ¡Î»ÖõÄÏÞÖÆ²»Í¬¡£ 2.ͨ³£µÝ¹éµÄËã·¨¼òµ¥¡¢Ò×¶®¡¢ÈÝÒ×±àд£¬µ«Ö´ÐеÄЧÂʲ»¸ß¡£ 3.ÔÚÒ»¸ö˳Ðò´æ´¢µÄÑ»·¶ÓÁÐÖÐ, ¶ÓÍ·Ö¸ÕëÖ¸Ïò¶ÓÍ·ÔªËØµÄºóÒ»¸öλÖᣠ4.ÔÚÓÃÑ»·µ¥Á´±í±íʾµÄÁ´Ê½¶ÓÁÐÖУ¬¿ÉÒÔ²»Éè¶ÓÍ·Ö¸Õ룬½öÔÚÁ´Î²ÉèÖöÓβָÕë¡£ 5.Ó÷ǵݹ鷽·¨ÊµÏֵݹéË㷨ʱһ¶¨ÒªÊ¹Óõݹ鹤×÷Õ»¡£ 6£®¶ÓÁÐÖ»ÔÊÐíÔÚ±íµÄÒ»¶Ë½øÐвåÈ룬¶øÔÚÁíÒ»¶Ëɾ³ýÔªËØ¡£
ËÄ¡¢Ó¦ÓÃÌâ
1£®ÉèÓÐÒ»¸ö˳ÐòÕ»S£¬ÔªËØs1£¬ s2£¬ s3£¬ s4£¬ s5£¬ s6ÒÀ´Î½øÕ»£¬Èç¹û6¸öÔªËØµÄ³öջ˳ÐòΪs2£¬ s3£¬ s4£¬ s6£¬ s5£¬ s1£¬Ôò˳ÐòÕ»µÄÈÝÁ¿ÖÁÉÙӦΪ¶àÉÙ£¿ 2. ÊÔÍÆµ¼³öµ±×ÜÅÌÊýΪnµÄHanoiËþµÄÒÆ¶¯´ÎÊý¡£
3. ÓÃջʵÏÖ½«ÖÐ׺±í´ïʽ8-(3+5)*(5-6/2)ת»»³Éºó׺±í´ïʽ£¬»³öÕ»µÄ±ä»¯¹ý³Ìͼ¡£
16
¹²·ÖÏí92ƪÏà¹ØÎĵµ