当前位置:首页 > 江西省南昌市2018-2019学年高三第一轮复习数学数学训练题(四) Word版含答案
2当0?x?1时,x?1?0,lnx?0,∴g'(x)?0,故g(x)单调递减; 2当x?1时,x?1?0,lnx?0,∴g'(x)?0,故g(x)单调递增.
∴g(x)?g(1)?0(?x?0,x?1).
(1,0)∴除切点之外,曲线C在直线L的下方.
∵0?x?p?q?1,∴a(x?p)(x?q)?0. a∴当x?(0,p)时,f(x)?g(x)?0,即f(x)?g(x).
又f(x)?(p?a)?a(x?p)(x?q)?x?a?(p?a)?(x?p)(ax?aq?1),
x?p?0,且ax?aq?1?1?aq?0,∴f(x)?(p?a)?0,∴f(x)?p?a,
综上,g(x)?f(x)?p?a.
19.(1)证明:当x?0时,f'(x)?e?cosx?1?cosx?0, ∴函数y?f(x)在[0,??)上单调递增.
(2)解:∵f(x1)?g(x2),∴e1?sinx1?x2?2, ∴P,Q两点间的距离等于|x2?x1|?|e1?sinx1?x1?2|,
设h(x)?e?sinx?x?2(x?0),则h'(x)?e?cosx?1(x?0), 记l(x)?h'(x)?e?cosx?1(x?0),则l'(x)?e?sinx?1?sinx?0, ∴h'(x)?h'(0)?1?0,∴h(x)在[0,??)上单调递增,∴h(x)?h(0)?3, ∴|x2?x1|?3,即P,Q两点间的最短距离等于3.
xxx20.解:(1)当k?1时,f'(x)?e?(x?1)e?2x?x(e?2)
xxxxxxx令f'(x)?0得x1?0,x2?ln2.
共分享92篇相关文档