云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 工程力学习题集及部分解答指导

工程力学习题集及部分解答指导

  • 62 次阅读
  • 3 次下载
  • 2025/5/7 22:42:40

∑Fy= 0 FN-Wcosα-Fsinα=0 FN=Wcosα+Fsinα=921+171=1092N 最大静摩擦力为 Ffm= fsFN=0.20×1092=218N 水平主动力F与重力W在x方向的投影为 Fx +W x = Fcosα- Wsinα=470-335=135N

显然,物块有沿斜面上滑的趋势,此处静摩擦力Ff沿斜面向下,如图(b)所示。 由于Fx +W x<Ffm,故物块静止。此时摩擦力为静摩擦力Ff,方向沿斜面向下, 大小由平衡方程求得。

∑Fx= 0 Fcosα-W sinα- Ff =0 Ff =Fcosα-W sinα=500×cos20°-980×sin20°=470-335=135N

4-3、如图4-3所示,用逐渐增加的水平力F去 推一重力W=500N的衣橱。已知h=1.3a,fs=0.4, 问衣橱是先滑动还是先翻倒?若是先翻,则请调整 h的值,使它只移不翻。若是先翻,则请调整h的值, 使它只移不翻。

解:1)取衣橱为研究对象,考虑其即将滑动时 的临界平衡状态,画受力图(a)。 a 列平衡方程: F ∑Fx =0,F-Ffm =0 图4-3 ∑Fy =0,FN-W=0 W h Ffm= fsFN Ffm= fsW Ffm a 亦即物体开始滑动的条件是: F

F> fsW ① FN 2)考虑衣橱即将翻倒时的 (a) h W 临界平衡状态,画受力图(b)。 ∑M A(F)=0 Fh-Wa/2=0 Ff

F=(a/2h)W A 亦即物体开始翻倒的条件是: (b) FN F>(a/2h)W ②

显然,如果有①或②式的情况,物体均不能保持原有的平衡状态。 (1)当fs<a/2h、fsW<F<(a/2h)W时,衣橱先滑动; (2)当fs>a/2h、F>(a/2h)W时,衣橱先翻倒;

(3)当fs=a/2h、F= fsW时,衣橱将处于临界平衡状态。 由式①、②可得:

衣橱先滑动,应有Fmin= fsW=0.4×500=200N 衣橱先翻倒, 应有Fmin=(a/2h)W=a×500/(2×1.3a)=192N 故逐渐增加的水平力F时,衣橱先翻倒。

3)要保持衣橱只移不翻,必须满足条件:fs<a/2h,即h<a/2fs。 故有 hmax=a/2fs=a/(2×0.4)=1.25a

4-4、设一抽屉尺寸如图4-4所示。若拉力F偏离其中心线,稍一偏转,往往

被卡住而拉不动。设x为偏离抽屉中心线的 距离,fs为抽屉偏转后,A、B二角与两侧面 间的静摩擦因数。假定抽屉底的摩擦力不计, 试求抽屉不致被卡住时a、b、fs和x的关系。

解题分析:

显然,在此考虑的是抽屉即将被卡住的临界 平衡状态;抽屉在A、B两点有约束反力作用。 图4-4 解析法解题:约束处需画出法向反力和切向反力。 几何法解题:约束处需画出全反力。

方法一:解析法

①选取抽屉为研究对象,画其临界平衡状态下的受力图(a)。 ②列平衡方程并求解。

∑Fx = 0 FNA – FNB = 0 (1) FfB ∑Fy = 0 FfA + FfB – F = 0 (2) ∑MA(F)= 0 FNB

FfB b+ FNB a–F(b/2 + x)= 0 (3) FNA FfA = ?sFNA FfB = ?sFNB (4) 联立解得: x=a∕2?s ; FfA F 抽屉不被卡住的条件: F≥FfA + FfB , (a) 亦即 x ≤ a∕2?s 。

由上列式计算可知:FfA = ?sFNA = FfB 故A、B两点的摩擦力同时达到临界值。

方法二:几何法 选取抽屉为研究对象,画其临界平衡状态 b 下的受力图:因抽屉仅受三个力FRA、FRB、F 作用而平衡,故此三力作用线必汇交于一点C。 C 不难看出,A、B两点的摩擦力应相等(若不 相等,即使力F不偏心抽屉也会被卡住);所以 E B φ FRA、FRB必同时达到临界值,且与作用面的法 a FRB 向的夹角为摩擦角φ。如图(b)所示。 A D 几何关系: φ x tanφ=(a + CE)∕(b + x) (1) FRA F tanφ= CE ∕(b – x) (2) (b) 联立解得: x=a∕2?s ; 抽屉不被卡住的条件:

亦即 x ≤ a∕2?s 。

4-5、砖夹宽28cm,爪AHB和BCED在B点铰连,尺寸如图4-5所示。被提起砖的重力为W,提举力F作用在砖夹中心线上。已知砖夹与砖之间的静摩擦因数fs=0.5,问尺寸b应多大才能保证砖不滑掉? 解题提示

解析法考虑有摩擦时物系的平衡问题的方法 步骤与不考虑摩擦时的方法步骤大致相同;画各

研究对象时,一般考虑其临界平衡状态,即静摩 擦力达到最大值。

①分别取砖块、爪AHB为研究对象,画其临 界平衡状态下的受力图(a)、(b)。

FfA FfD 图4-5

FBx

FNA FND FBy

F′NA W (a) F′fA (b) ②列平衡方程并求解。 由图(a)

∑Fx = 0 FNA – FND = 0 (1)

∑Fy = 0 FfA + FfD – W = 0 (2) FfA = W/2 ∑MD(F)= 0 W×14- FfA×28= 0 (3) FNA = W/2fs FfA= fsFNA FFd= fsFND (4) 由图(b)

∑MD(F)= 0 4F+10 FfA - FNA b=0 (5) b=9cm 即b≤9cm时,能保证砖不滑掉。 (此题亦可用几何法求解。)

4-6、如图4-6所示,A、B两物的重力均为150N,与水平固定面的静摩擦因数均为fs=0.2,弹簧张力为200N,问使两物体同时开始向右滑动所需之最小力F之值?若已知固定面间距H=32cm,再问力F应作用于何处,即h=? 解:①分别取物A、物B及杆AB为研究对象, 画其临界平衡状态下的受力图(a)、(b)、(c)。

FNA FT F′A FfA h FA A FB B

WA WB F H FfB FT FNB F′B

(a) (b) (c) 图4-6 ②列平衡方程并求解。

由图(a) ∑Fx = 0 FA–FfA =0 ∑Fy = 0 FT - FNA – WA = 0 FNA= FT – WA=200-150=50N FfA = fs FNA FA=FfA = 0.2×50=10N 由图(b) ∑Fx = 0 FB–FfB =0 ∑Fy = 0 FNB –FT – WB = 0 FNB= FT + WB=200+150=350N FfA = fs FNA FB=FfB = 0.2×350=70N 由上计算可得:使两物体同时开始向右滑动所需之最小力F的值为

Fmin= F′A + F′B =80N

由图(c) ∑MA(F)= 0 Fh–FB H=0 h= FB H/h=70×32/80=28cm

4-7、A、B两物体的安置如图4-7所示。已知WA=150N, WB=450N,各平面间的静摩擦因数均为fs。试求使两物体静止不动 所需fs的最小值,并求A、B联绳的拉力FT。

解题分析: 显然此题宜采用“逐步拆开法”。

题求?s的最小值:需考虑各研究对象的临界 平衡状态,即各物体间的静摩擦力均为最大值; 该情况下,物B有沿斜面向下滑动的趋势;物A

有沿物B表面面向上滑动的趋势;画受力图时, 图4-7 要特别注意静摩擦力Ff的图示方向。

①分别选取物体A、B为研究对象,画其临界平衡状态下的受力图(a)、(b)。 y y WB WA FT x FNA FT x

FfA FfA α FNA α FfB FNB (a)物体A (b)物体B ②列平衡方程并求解。

图(a) ∑Fx = 0 FT – FfA – WA sinα=0 (1) ∑Fy = 0 FNA –WA cosα =0 (2) FfA=?s FNA (3) FT = ?sWA cosα+ WA sinα (c)

图(b) ∑Fx = 0 FT + FfA + FfB – WB sinα=0 (4) ∑Fy = 0 FNB - FNA–WB cosα=0 (5) FfB=?s FNB (6) FT =WB sinα - ?s(2WA+WB)cosα (d) 联立(c)、(d)解得:

?s =(WB- WA)tanα ∕(3WA+WB)=1∕4=0.25 FT = WA(?s cosα+ sinα)=120N #

4-8*、图4-8所示为手动钢筋剪床,用来剪断直径为d的钢筋。设钢筋与剪刀间的静摩擦因数为fs,操作时为省力应使钢 筋位于l较小的位置;但l过小又会使钢筋打滑 而向左出。试求使钢筋不打滑的l最小值。 解题提示:此题采用几何法求解较适宜。 解:取直径为d的钢筋为研究对象,画其 临界平衡状态下的受力图(a)。 图4-8 因钢筋在A、B两点受全反力FRA、FRB FRB φ

搜索更多关于: 工程力学习题集及部分解答指导 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

∑Fy= 0 FN-Wcosα-Fsinα=0 FN=Wcosα+Fsinα=921+171=1092N 最大静摩擦力为 Ffm= fsFN=0.20×1092=218N 水平主动力F与重力W在x方向的投影为 Fx +W x = Fcosα- Wsinα=470-335=135N 显然,物块有沿斜面上滑的趋势,此处静摩擦力Ff沿斜面向下,如图(b)所示。 由于Fx +W x<Ffm,故物块静止。此时摩擦力为静摩擦力Ff,方向沿斜面向下, 大小由平衡方程求得。 ∑Fx= 0 Fcosα-W sinα- Ff =0 Ff =Fcosα-W sinα=50

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com